The main research objective of our group is to investigate quantum effects of nano- and microscale systems and their implications for the foundations and applications of quantum physics. Our goal is to gain access to a completely new parameter regime for experimental physics with respect to both size and complexity.


Petition "Wissenschaft ist Zukunft" ├╝bergeben

Im Zuge eines Gesprächstermins bei Staatssekretär Jochen Danninger wurden die mehr als 50.000 Unterstützungserklärungen der Petition "Wissenschaft ist Zukunft" im Finanzministerium an die Politik übergeben.



Bringing bonded mirrors out of the laboratory and into the light

Quantum physicists at the University of Vienna present yet another example that fundamental research can create unexpected technological innovations. The start-up “Crystalline Mirror Solutions,” or CMS, is focused on the manufacturing of high-performance mirrors for optical precision measurement.


Cooling by measurement

Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum non-demolition measurements were first introduced in the 1970s for gravitational wave detection, and now such techniques are an indispensable tool throughout quantum science.

more ...

Cavity cooling of levitated nanoparticles

The coupling of a levitated massive particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems.


Latest publications 


Cavity Optomechanics

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt

Rev. Mod. Phys. 86, 1391 (2014)


Entanglement-enhanced time-continuous quantum control in optomechanics

S. G. Hofer, Klemens Hammerer
arXiv:1411.1337 [quant-ph]


Silicon optomechanical crystal resonator at millikelvin temperatures

S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter

Phys. Rev. A 90, 011803(R), (2014)


Cavity Optomechanics - Nano- and Micromechanical Resonators Interacting with Light

M. Aspelmeyer, T. Kippenberg, F. Marquardt (Ed.)

Springer (2014)


Focus on Gravitational Quantum Physics

M. Aspelmeyer, C. Brukner, D. Giulini and G. Milburn (Eds.)
New Journal of Physics Focus Issue
New Journal of Physics, Vol. 16 (2014)




more Publications ....