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A B S T R A C T

This thesis presents progress in two key areas in experimental quan-
tum optomechanics: Optimal estimation of the state of an optome-
chanical system and generation and detection of optomechanical en-
tanglement. In the first part of the thesis, I present the first experimen-
tal demonstration of optimal state estimation in cavity optomechanics.
This is achieved by Kalman filtering based on a realistic model of the
complete experiment. The accuracy of the Kalman filter for our ex-
periment is demonstrated using statistical methods. Kalman filtering
allows to systematically account for typical experimental limitations
such as multiple mechanical modes, colored laser noise and detection
inefficiencies. It is universally applicable to any cavity optomechani-
cal system as long as the interaction is Gaussian. It works for classical
systems as well as for systems dominated by quantum noise. Finally,
Kalman filtering can be performed in real time and is therefore a suit-
able basis for optimal feedback control of quantum optomechanical
systems.

The second part of the thesis deals with optomechanical entangle-
ment. The optomechanical interaction between a light field and a
mechanical mode can lead to entanglement between different tem-
poral modes of the light field reflected from an optomechanical cav-
ity—an effect which can be detected, for example, in pump–probe
type experiments. This thesis establishes an alternative protocol for
detecting such entanglement for a cavity driven by a continuous,
resonant laser beam. Crucially, extensive and systematic simulations
show that this protocol works even in the presence of multiple, closely
spaced mechanical modes (which can be problematic in pump–probe
type experiments) and assuming realistic levels of residual classical
laser noise. In the novel protocol, extraction and correlation of dif-
ferent temporal light modes happen entirely in post-processing. The
method is therefore highly flexible and can, in principle, be used
to analyze correlations between arbitrary temporal modes of the re-
flected light field.
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Z U S A M M E N FA S S U N G

Diese Dissertation behandelt zwei Schlüsselthemen der experimentel-
len Quantenoptomechanik: Optimale Schätzung des Zustandes eines
optomechanischen Systems und Erzeugung und Nachweis von opto-
mechanischer Verschränkung. Im ersten Teil der Dissertation präsen-
tiere ich das erste Experiment zur optimalen Zustandsschätzung in
der Cavity-Optomechanik. Die optimale Zustandsschätzung erfolgt
durch einen Kalmanfilter, dem ein realistisches Modell des Experi-
ments zu Grunde liegt. Die Anwendbarkeit des Kalmanfilters auf un-
ser Experiment wird durch statistische Methoden nachgewiesen. Der
Kalmanfilter ermöglicht eine systematische Behandlung typischer ex-
perimenteller Unzulänglichkeiten, wie etwa die gleichzeitige Kopp-
lung an mehrere mechanische Moden, frequenzabhängiges Laserrau-
schen und ineffiziente Detektion. Der Kalmanfilter ist universell an-
wendbar für beliebige cavity-optomechanische Systeme, so lange die
Wechselwirkung Gaußsch ist. Er kann sowohl auf klassische Syste-
me angewandt werden, als auch auf Systeme, die durch Quanten-
rauschen dominiert sind. Außerdem erlaubt der Kalmanfilter eine
Echtzeit-Implementierung, so dass er als Grundlage für optimales
Feedback-Kühlen quanten-optomechanischer Systeme dienen kann.

Der zweite Teil der Dissertation beschäftigt sich mit optomecha-
nischer Verschränkung. Die optomechanische Wechselwirkung zwi-
schen dem Lichtfeld und einer mechanischen Mode kann zu Ver-
schränkung zwischen verschiedenen temporalen Moden des reflek-
tierten Lichtfelds führen. Dieser Effekt kann beispielsweise in Pump-
probe-Experimenten nachgewiesen werden. In dieser Arbeit analysie-
re ich ein alternatives Protokoll zur Detektion solcher Verschränkung
für optomechanische cavities, die kontinuierlich und resonant getrie-
ben werden. Ausführliche, systematische Simulationen zeigen, dass
dieses Protokoll auch in Systemen mit mehreren mechanischen Mo-
den und unter realistischen Annahmen an das klassische Laserrau-
schen Verschränkung nachweisen kann. Eine Besonderheit des Proto-
kolls ist, dass die verschiedenen temporalen Lichtmoden vollständig
im Postprocessing extrahiert und korreliert werden. Daher ist die Me-
thode sehr flexibel und ermöglicht prinzipiell die Analyse von Kor-
relationen zwischen beliebigen temporalen Moden des reflektierten
Lichtfelds.
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1
I N T R O D U C T I O N

The experiments discussed in this thesis are motivated by the de-
sire to achieve quantum control of macroscopic objects. Ultimately, towards macroscopic

quantum physicsthis will enable precision tests of macroscopic quantum physics as
well as novel quantum information applications based on mechanical
systems [AKM14, sec. XI.]. To achieve quantum control of macro-
scopic objects we use cavity optomechanics. This allows us to apply
the well-established and precise tools of quantum optics for control-
ling and measuring the state of massive mechanical systems. In the
past decade, quantum control of massive objects has come a long state of play

way, including experiments such as strong coupling between me-
chanical and optical degrees of freedom [Grö+09a; Teu+11b], ground-
state cooling [Teu+11a; Cha+11], optomechanical entanglement in mi-
crowave systems [Pal+13b], and squeezed lights produced by the op-
tomechanical interaction [Saf+13; Pur+13].

This thesis tackles two major challenges on the path to quantum
control of macroscopic objects: Optimal state estimation of optome- goals of this thesis

chanical systems and optomechanical entanglement using laser light.
Optimal state estimation in cavity optomechanics is the basis for

feedback control of macroscopic mechanical objects, as well as system
identification and optimal force estimation. This thesis presents the optimal state estimation

first experimental demonstration of optimal state estimation in cavity
optomechanics, using Kalman filtering [Wie+15]. Kalman filtering is
a universal and systematic method for optimal state estimation and
it can be implemented in real-time.

Optomechanical entanglement, on the other hand, is interesting,
first of all, as an unambiguous quantum effect involving macroscopic
objects. But optomechanical entanglement can also serve as a re- optomechanical

entanglementsource for quantum information processing, for example to prepare
quantum states of the mechanical subsystem via quantum telepor-
tation [Hof+11; Hof+13; HH15]. In experimental practice, however,
generation and detection of entanglement between a mechanical oscil-
lator and laser light has been found to be challenging in the presence
of classical laser noise and of multiple mechanical modes. Hence, a
major part of this thesis is devoted to studying (using systematic, re-
alistic simulations) the feasibility of entanglement detection in cavity
optomechanics using a novel measurement protocol.

The theory literature usually assumes only a single mechanical
mode. But in practice mechanical systems are multi-mode systems multiple mechanical modes

and often many of these modes interact significantly. Additional me-
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2 introduction

chanical modes—if they are not properly taken into account—can pre-
vent both optimal state estimation and entanglement detection. For-
tunately, as demonstrated in this thesis, there are systematic ways to
account for multiple mechanical modes in both cases, such that opti-
mal state estimation and entanglement detection can be achieved for
multimode optomechanical systems.

Our mechanical devices operate at rather low mechanical frequen-
cies, between some 100 kHz and some MHz. As it happens, classicalclassical laser noise

laser noise is a common problem in this frequency range. In this the-
sis, I demonstrate two different approaches to this problem. In state
estimation, laser noise can be dealt with by including an adequate
model of the classical laser noise in the state space model of the ex-
periment. In this way, we obtain state estimates which are optimal
for the given experimental setup (though they could be improved by
eliminating the classical laser noise). Regarding the entanglement
experiment, I demonstrate that a filter cavity can suppress the laser
noise to levels which are compatible with the generation and detec-
tion of entanglement.

1.1 outline

The remainder of the introduction (Section 1.2) is devoted to locat-
ing our experiments in the context of other work in optomechanics.
Chapter 2 presents the theoretical background for our experimentshistorical, theoretical, and

experimental background and introduces the notation. Chapter 3 describes the experimental
setups, including the laser system, the mechanical devices and the
optomechanical cavities.

Chapter 4 discusses state estimation in cavity optomechanics. I
provide a pedagogical introduction to the Kalman filter and presentoptimal state estimation

experimental results (published in [Wie+15]) on optimal state estima-
tion of a cavity-optomechanical system. I conclude with a discussion
contrasting our work with previous work and an outlook regarding
potential applications.

Chapter 5 explores a novel protocol for the detection of entangle-
ment between different modes of the light field arising from the inter-entanglement detection

action with a mechanical system. The experimental implementation
of the protocol is still work in progress. In this thesis, I explore the
protocol mainly using realistic simulations of the full experimental
setup and I discuss the current experimental limitations. I close in
Section 5.12 with a discussion of what has been achieved in this re-
spect and an outlook discussing potential next steps.

In the appendix, I summarize the notation used throughout the the-
sis (Appendix A). I also add some more details regarding laser noiseappendix

measurements (Appendix B) and simulations of the entanglement ex-
periment (Appendix C).



1.2 historical context 3

1.2 historical context

Optomechanics in the most general sense—the study of the interac-
tion of electromagnetic radiation and mechanical systems—has a long
history [see AKM14, sec. I]. In classical physics, it was recognized radiation pressure

early on that, if light carries a momentum in its direction of propa-
gation (as suggested by corpuscular theories of light), then it should
also exert a pressure on mechanical objects. Already in the early
1600s, Johannes Kepler proposed that this radiation pressure force
could explain why comet tails point away from the sun, independent
of the comet’s direction of motion [Kep19].1 1 This explanation is still

accepted for the so-called
’dust tail’ of comets.

In 1873, Maxwell derived radiation pressure from his theory of elec-
tromagnetic waves [Max73, pp. 391-392], thus demonstrating that ra-

radiation pressure from
classical electro-dynamics

diation pressure is not necessarily tied to a corpuscular theory of light.
On the same pages, Maxwell proposed that radiation pressure might
be measurable in a laboratory experiment. The first conclusive exper-
iments were performed at the beginning of the 20th century by Lebe-
dew and, independently, by Nichols and Hull, demonstrating the ex-
istence of radiation pressure in so-called light mills [Leb01; NH01].
Amusingly, already these early, purely classical, experiments with ra-
diation pressure were plagued by unwanted effects due to heating by
absorption, which—more than hundred years later—is still a major
roadblock in many quantum optomechanics experiments.

Only a few years later, in 1909, Einstein recognized that quantiza-
tion implies stochastic fluctuations of the radiation pressure [Ein09]. quantum radiation

pressureIn a similar way, fluctuating radiation pressure due to laser shot noise
acts like a random noise force (also known as “backaction noise”) on backaction noise and SQL

mechanical objects and imposes a lower limit on the accuracy of con-
tinuous position measurements, the standard quantum limit [Cav80].

It took almost a century to directly observe backaction noise in the
laboratory. In 2008, Murch et al. observed backaction heating in a experimental observation

of backaction noisecloud of ultra-cold atoms [Mur+08]; the mechanical mode in this case
was a collective mode of motion of the atom cloud. And the first
direct observation of backaction noise on a macroscopic mechanical
system (a thin, square SiN membrane of 0.5 mm lateral dimensions)
had to wait till 2013 [PPR13].

Detecting quantum optomechanical effects (such as backaction noise)
is challenging because it requires the optomechanical interaction to key ingredients for

quantum optomechanicsdominate other effects such as Brownian motion of the mechanical
object. The first crucial step towards sufficiently large interaction
strengths was the move to cavity optomechanics, i.e. embedding the cavity optomechanics

mechanical objects in high-finesse cavities to amplify the optome-
chanical interaction. This idea dates back to the late 1960s when
Braginsky and coworkers showed theoretically [BM67] and in exper-
iments with microwave cavities [BMT70] that optomechanical effects
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can be enhanced using cavities and that the nature of these effects
depends drastically on the detuning of the radiation from the cav-
ity resonance. The first cavity optomechanics experiment with laser
light was performed a decade later by the quantum optics group of
Herbert Walther in Munich [Dor+83].

A second important step towards large optomechanical coupling
consisted in moving to micro-mechanical structures with favorablemicrofabrication

optical and mechanical properties. Because of their small mass, micro-
mechanical structures allowed to reach high (bare) optomechanical
coupling and enabled a new generation of experiments in the late
1990s.

The first of these more recent experiments focused on high sen-
sitivity read-out of the mechanical motion. These experiments weretowards optomechanical

state estimation able to measure the thermal fluctuations of the mechanical position at
room temperature [Had+99] and at cryogenic temperatures [Tit+99].
Right at the start, the ability to precisely detect the mechanical po-
sition was recognized as a step towards mechanical state control.
[CHP99], for example, used optical position readout to feedback cool
a micro-mirror. More than a decade later, we continued this line
of research and showed how to achieve optimal state estimation in
cavity-optomechanical systems using a Kalman filter [Wie+15]. This
opens the door to optimal feedback control of the mechanical state. In
contrast to earlier approaches to mechanical state estimation, Kalman
filtering is not only optimal (yielding the smallest possible estimation
error) but also more systematic and more widely applicable (to any
cavity optomechanical system, as long as the interaction is Gaussian).

Also in the 1990s, quantum effects in optomechanical systems were
first investigated theoretically, among them squeezing of light, andtowards optomechanical

entanglement QND measurements of the light intensity [see ref.s in AKM14, sec. I.].
Most importantly for us, also the generation of non-classical states of
light and mechanics and, in particular, entanglement was explored
theoretically [BJK97; MMT97]. More experimentalist-friendly propos-
als for the generation and detection of optomechanical entanglement
appeared more than a decade later. [Vit+07] proposed a way to gener-
ate stationary entanglement between the intracavity light and the me-
chanical mode using a continuous laser drive. In contrast, [Hof+11]
proposed a pulsed protocol which generates optomechanical entan-
glement in a first pulse and then swaps the mechanical state onto a
second pulse. This reduces the problem of detecting entanglement
between light and a mechanical system to the easier problem of de-
tecting entanglement between two pulses of light. Two years after it
was first proposed, the protocol of [Hof+11] was experimentally real-
ized in a microwave electromechanical system [Pal+13b]. In contrast
to most existing optomechanical systems, this electromechanical sys-
tem has the advantage that only the fundamental mechanical mode
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interacts significantly. This is due to the different nature of the cou-
pling: In electromechanics, the coupling is capacitive and therefore
depends on the average displacement of the mechanical oscillator. In
optomechanics, on the other hand, the coupling results from the in-
teraction of a focused laser beam with a mechanical structure. In this
case, the coupling is strong for any mechanical mode which causes
significant displacement in the region of the laser spot, and there are
usually many modes which do.

Simultaneous coupling to a multitude of mechanical modes is a
serious problem for entanglement detection in optomechanical sys-
tems, but also for optimal state estimation. This thesis shows how to
systematically deal with the presence of multiple significantly inter-
acting mechanical modes, if this cannot be avoided otherwise (which
may be the experimenter’s preferred option in many cases).

The two main topics of this thesis—optomechanical state estima-
tion and optomechanical entanglement—were recently connected in
theory [Hof+13; HH15]. It was shown that optomechanical entangle- entanglement-based

quantum controlment is a resource for time-continuous quantum control of the me-
chanical system. This shows that there is a close connection between
optimal state estimation, which is the basis of optimal control, and
the generation of optomechanical entanglement.





2
T H E O RY

This chapter reviews the basic theory for our cavity-optomechanical
experiments and introduces the notation2 for the subsequent chap- 2 The notation is also

summarized in
Appendix A

ters. Section 2.1 deals with one-dimensional mechanical oscillators,

outline
Section 2.2 with the mechanical motion of solid bodies. Section 2.3
discusses optical cavities. Section 2.4 treats the coupling between me-
chanical oscillators and optical cavities, both the case of end-mirror-
coupling (Section 2.4.1), as well as the coupling of membranes inside
cavities (Section 2.4.2). Section 2.5 describes the linearization of the
optomechanical coupling for large amplitudes of the intracavity light
field. This leads to the quantum Langevin equations for the coupled
optomechanical system in the linearized regime (Section 2.6), which
are the basis for the work described in this thesis.

Note that the material presented in this chapter is not original and
can be found in many other references. For a general review of cavity references

optomechanics see [AKM14], for more in-depth discussions of the
coupling of membranes to optical cavities see [Wil12; Bia14], and for
a careful discussion of the open quantum systems description of our
experimental systems see [Hof15, ch. 1].

2.1 1d mechanical oscillators

Let us begin with an undamped classical harmonic oscillator with
mass m, spring constant k and angular frequency ωm ≡

√
k/m. Its undamped harmonic

oscillatorstate of motion is described by its momentum p and position q, the
so-called quadratures. Its equation of motion is given by:

ṗ = −kq = −mωm
2q, q̇ = p/m, (2.1)

There are natural length scales q0 and p0 for this system, namely ground state uncertainties

q0 ≡
√

h̄/2mωm, p0 ≡ mωmq0, (2.2)

which, as we will see later, are the position and momentum uncer-
tainty of the quantized system in the ground state. The quadratures
q and p in (2.1) are in SI-units. We obtain dimensionless quantities, by
expressing q and p as multiples of q0 and p0, i.e. by the substitutions dimensionless units

q→
√

2q0 · q, p→
√

2p0 · p. (2.3)

7



8 theory

The equations of motion then simplify to

ṗ = −ωmq, q̇ = ωm p, (2.4)

and the oscillator’s energy E =
(

p2/m + kq2) /2 becomes

E = h̄ωm
(

p2 + q2) /2. (2.5)

The oscillator’s state of motion can now be expressed more simply
in terms of a complex amplitudecomplex amplitude

b ≡ (q + ip) /
√

2. (2.6)

The oscillator’s energy is then given by

E = h̄ωm |b|2 /2, (2.7)

and the equation of motion simplifies to

ḃ = −iωmb, (2.8)

which is solved by a complex rotation b (t) = b (0) e−iωmt.
To describe a quantum-mechanical oscillator, we impose the canon-

ical commutation relation [q̂, p̂] = i which, using the relationscanonical quantization

q̂ ≡
(

b̂ + b̂†
)

/
√

2, (2.9)

p̂ ≡
(

b̂− b̂†
)

/i
√

2, (2.10)

translates into
[
b̂, b̂†

]
= 1 and leads to an extra term h̄ωm/2, the

vacuum energy, in the Hamiltonian Ĥm for the mechanical oscillator:

Ĥm = h̄ωm

(
b̂†b̂ + 1/2

)
. (2.11)

The eigenstates of this Hamiltonian are the eigenstates |n〉 of the num-
ber operator n̂ ≡ b̂†b̂, which are defined by the conditionn-phonon states

n̂ |n〉 = b̂†b̂ |n〉 = n · |n〉 , n ∈N0. (2.12)

The state |n〉 is referred to as a Fock state or n-phonon state.
The extra energy term h̄ωm/2 in Ĥm is connected to the non-zero

variance of position q̂ and momentum p̂ in the ground state |0〉:ground-state variance 〈
0
∣∣ q̂2 ∣∣ 0

〉
=
〈
0
∣∣ p̂2 ∣∣ 0

〉
= 1/2. (2.13)
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(2.13) confirms that we have indeed expressed q and p in units of the
ground-state uncertainty. More generally, for an n-phonon state |n〉,〈

n
∣∣ q̂2 ∣∣ n

〉
=
〈
n
∣∣ p̂2 ∣∣ n

〉
= n + 1/2. (2.14)

In thermal equilibrium with an environment at temperature T, the
probability for finding the system in the state |n〉 is given by the Bose-
Einstein distribution Bose-Einstein distribution

p(n) = (1− exp(−βh̄ωm)) · exp(−βh̄ωm)
n, β ≡ (kBT)−1 , (2.15)

such that the thermal state can be written as thermal state

ρth ≡
∞

∑
n=0

p(n) |n〉 〈n| . (2.16)

Therefore, position and momentum variance in the thermal state are thermal position and
momentum variance

tr
(
ρth q̂2) = tr

(
ρth p̂2) = ∞

∑
n=0

p (n)
(

n +
1
2

)
=

1
2

coth
(

h̄ωm

2kBT

)
,

(2.17)

where tr (ô) denotes the trace of an operator ô. The average phonon
number n̄ in the thermal state is thermal occupation

n̄ ≡ tr (ρth n̂) =
∞

∑
n=0

p(n) · n =
1

exp (βh̄ωm)− 1
. (2.18)

We typically deal with frequencies ωm which are small compared to
kBT/h̄. Therefore, we can use the following limits for the average high temperature limits

phonon number (2.18) and the thermal position and momentum vari-
ance (2.17):

tr (ρth n̂) , tr
(
ρth q̂2) , tr

(
ρth p̂2) kBT�h̄ωm' kBT

h̄ωm
. (2.19)

2.1.1 Dissipation

Real mechanical oscillators are never undamped, however. A sim-
ple model of damping is velocity-damping (also known as Brownian
motion damping) Langevin equation

q̇ = ωm p, ṗ = −ωmq− γm p + F, (2.20)

where the momentum-quadrature is damped with rate γm. In (2.20),
F describes a stochastic thermal noise force, which— according to the fluctuation

fluctuation–dissipation theorem (FDT) [CW51; Sau90]—invariably aris-
es for a damped system in contact with a thermal bath. Because of the
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stochastic force F,3 (2.20) is a stochastic differential equation, which3 Note that, in (2.20), F is
in zero-point units (as ṗ). is known as the Langevin equation.

Note that there are damping mechanisms (such as damping due to
internal materials loss) which are relevant for macroscopic mechani-
cal oscillators but which are not well-described the velocity damping
model (2.20) [Sau90]. But close to the mechanical resonance, (2.20) is
a good approximation [see Wil12, sec. 2.2].

Written solely in terms of q, the Langevin eq. (2.20) is

q̈ + γmq̇ + ωm
2q = ωmF. (2.21)

In Fourier space, (2.21) yields the following linear response functionmechanical susceptibility

χ (Ω) ≡ q̃ (Ω) /F̃ (Ω) = ωm/
(
ωm

2 −Ω2 + iΩγm
)

, (2.22)

which describes the response of the position quadrature to the ther-
mal noise force or any other external force. For small damping γm,
the response (2.22) is very large at Ω ' ωm. We can therefore strongly
excite the oscillator using a piezo mounted close to the mechanicalresonant drive

oscillator and driven at Ω ' ωm. Then, q becomes so large that the
thermal noise force F can be neglected in (2.21). If we then switch
off the drive, the motion is (for a short time) governed by a freely
decaying oscillation according to

q̈ + γmq̇ + ωm
2q = 0, (2.23)

i.e. the system oscillates at frequency

ωm ·
√

1− γm
2/4ωm

2
ωm�γm' ωm (2.24)

and its amplitude decays with the rate γm/2. The energy (when av-
eraged over a mechanical cycle) is proportional to q2, hence decays
with rate γm. This energy decay can be measured directly using ameasuring γm via

ringdowns spectrum analyzer with a sufficiently large bandwidth.
From a measurement of γm, we can calculate the mechanical quality

factor, or Q-factor,quality factor

Q ≡ ωm/γm, (2.25)

which expresses the damping time of the system in units of the me-
chanical period. In this thesis, we always deal with mechanical modes
with high quality factors in the range of 103 to 3× 107. High Q-factors
are crucial for quantum optomechanical experiments; but they are
also quite convenient for the theory because they allows us to use
high-Q approximations.
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2.1.2 Fluctuation

If the mechanical oscillator is in contact with a thermal bath at tem-
perature T, the FDT implies that the classical thermal noise force F
in (2.20) and (2.21) is described by the following white (single-sided)
noise power spectral density (NPS) [Sau90]:4 spectrum of

thermal noise force
4 Note that, in (2.26), F is
again in zero-point units.
To obtain SI-units,
multiply by

√
2p0.

SF(Ω) =
4kBT
h̄Ω

Im
(

χ (Ω)−1
)
=

4kBT
h̄Ω

γmΩ
ωm

=
4kBT
h̄Q

. (2.26)

This NPS corresponds to a delta-correlated autocorrelation function

E [F(t)F(t + τ)] = 2
kBT
h̄Q

δ(τ), (2.27)

where E [. . .] denotes the ensemble average in the thermal state.
In (2.26), χ denotes the mechanical susceptibility (2.22). Hence,

SF(Ω) is non-zero if the mechanical susceptibility has a non-zero
imaginary part, corresponding to a time lag between the driving force
F and the response of the mechanical position q. Such a time lag is
induced by mechanical damping. In this way, the FDT connects the
damping of a system to the thermal noise forces acting on it.

Using (2.26) and (2.22), we can calculate the NPS of the mechanical thermal position NPS

position in thermal equilibrium

Sq(Ω) = |χ(Ω)|2 · SF(Ω) =
4kBTγmωm

h̄
(
(ωm2 −Ω2)2 + γm2Ω2

) . (2.28)

This is the single-sided noise power spectral density of the position
coordinate. It is related to the position variance E

[
q2 (t)

]
by thermal position variance

E
[
q2 (t)

]
=
∫ ∞

0
Sq (Ω)dΩ/2π = kBT/h̄ωm ' n̄. (2.29)

The expectation value for the potential energy of the oscillator is there-
fore given by E

[
q2 (t)

]
· h̄ωm/2 = kBT/2, in accordance with the

equipartition theorem. The noise power (2.28) peaks at

Ω0 = ωm
√

1−Q−2/2
Q�1' ωm (2.30)

and has a full width at half maximum (FWHM) of γm is FWHM of thermally
driven position NPS

γm

(
1 + Q−2/4 +O

(
Q−4

)) Q�1' γm. (2.31)

Hence, for high Q factors, the power decay rate γm is also the FWHM-
width of the thermal position NPS (or, equivalently, of the absolute
square of the mechanical susceptibility).
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When we fit measured spectra, we usually approximate the thermal
noise power spectrum by a Lorentzian:Lorentzian approximation

Sq(Ω) ' 4kBT
h̄ωγm

(
1 + 4

(
Ω−ωm

γm

)2
)−1

. (2.32)

This approximation is good for high Q-factors and close to resonance.
Note again that, close to resonance, (2.32) is also a good approxi-
mation to the NPS resulting from forms of damping which are not
well-described by a velocity damping model [see Wil12, eq. (2.19)].

2.1.3 Quantum fluctuations

By replacing the noise term F in (2.20) by
√

2γm f , we obtain the fol-
lowing set of equations describing the damped and thermally driven
mechanical motion

q̇ = ωm p, ṗ = −ωmq− γm p +
√

2γm f , (2.33)

E [ f (t) f (t + τ)] =
kBT
h̄ωm

δ(τ) ' n̄δ(τ). (2.34)

This form is convenient because (as we will see) it is very similar to
that of the Langevin equations for the optical intra-cavity mode. In
(2.33), f has units of

√
Hz and can be interpreted as the root of a

phonon flux from the thermal bath.
To describe a quantum system, we now only need to interpret the

classical random variables q, p (and f ) as Heisenberg operators and
reinterpret (2.33) as their stochastic equations of motion. This yields
[Hof15, sec. 1.3.1]quantum Langevin

equations
˙̂p = −ωmq̂− γm p̂ +

√
2γm f̂ , ˙̂q = ωm p̂, (2.35)

where f̂ is now a self-adjoint noise operator satisfying55 〈ô〉 denotes the
expectation value of ô

with respect to the
quantum state of the bath.

〈 f̂ (t) f̂
(
t′
)
+ f̂

(
t′
)

f̂ (t)〉 /2 ' (n̄ + 1/2), (2.36)

Note the added term 1/2 in (2.36) compared to (2.34), which arises
because of the vacuum fluctuations of the quantized system. Note
also that the thermal noise force f̂ can only be treated as δ-correlated
in the limit of high temperatures and high mechanical quality factors
[see Hof15, sec. 1.3.1], which holds for our experiments.

(2.35) and (2.36) imply that, for bath temperatures far above the
ground state temperature, phonons enter the system at a rate n̄γmmechanical decoherence at

non-zero temperature (where n̄ is the mean phonon number of the bath at the mechanical
frequency ωm). This reduces the number of coherent oscillations from
Q to Q/n̄ [see AKM14, sec. II.B.2].



2.2 continuous mechanical oscillators 13

In our mechanical devices, clamping loss and material-intrinsic
losses are the dominant damping mechanisms. The heat bath for
these damping mechanisms is provided by the material of the sup-
port structure and of the oscillator itself, respectively. The thermal thermal bath occupation

occupation number n̄ for these heat baths is therefore determined by
the temperature T of the support and the oscillator (and the frequency
ωm of the mechanical mode) via the Bose-Einstein-distribution (2.18).

2.2 continuous mechanical oscillators

Let us link the simple 1D-model presented above to the mechanical
behavior of solid bodies such as those used in our experiments. We
use two different types of mechanical devices: Cantilevers carrying cantilevers and

membranesa Bragg mirror pad (for the state estimation experiment) and thin di-
electric membranes (for the entanglement experiment). Both types of
devices are roughly two-dimensional structures which are positioned
perpendicular to an optical cavity mode.

I call6 the axial direction (the direction along the cavity axis) z , and 6 Coordinates for
optomechanical cavities:

(top: mirror on cantilever;
bottom: membrane)

the transversal directions x and y. With this convention, our mechani-
cal devices are essentially extended surfaces in the x-y-plane and only
the motion of this surface in z direction couples optomechanically.

We describe the surface motion of the mechanical device in z-direc-
tion using a displacement field ψ (x, y, t). This scalar function gives

mechanical displacement
field

the displacement in z-direction of the surface for every point (x, y)
on the surface and for every time t. For small motional amplitudes,
the devices behave linearly, which implies that their motion can be
described via normal modes of the form

ψ (x, y, t) = ∑
i

qi (t) · ui (x, y) (2.37)

where qi (t) is the time-dependent amplitude of mode i and the mode
function ui (x, y) describes the geometric shape of the mode. In the
regime of linear motion, the mode amplitudes qi (t) satisfy the Lange-
vin equations (2.33) for damped harmonic motion with a resonance
frequency ωi. The resonance frequencies ωi and mode shapes ui(x, y)
can be found either by solving the elastic wave equation for the me-
chanical device (in the simplest cases) or by finite-element modeling
(for more complicated geometries).

Note that (2.37) defines qi and ui only up to a scaling factor since we
can redefine qi → α · qi and ui → (1/α) · ui without changing (2.37).
Hence, we have a freedom of normalization in the definition of ui. normalization of mode

functionsOne convenient option is to define ui such that its maximum equals 1.
With this choice, the coordinate qi expresses the peak displacement of
the given mode (the displacement of the point of maximum displace-
ment on the surface of the mechanical device, for the given mode).
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2.2.1 Modal mass

The kinetic energy of motion in z-direction is given by [see e.g. Yan11]

T =
(x

ρ · d · ψ̇(x, y, t)2 dx dy
)

/2 (2.38)

= ∑
i

(
q̇i(t)2

2

x
ρ · d · ui(x, y)2 dx dy

)
, (2.39)

where ρ = ρ(x, y) and d = d(x, y) are the mass density and thickness
of the oscillator. ρ and d are constant for the membranes, but depend
on x and y for the cantilevers due to the mirror pad they are carrying.
Note that, in (2.39), terms ui(x, y) · uj(x, y) drop out because of the
orthogonality of the different eigenmodes.

By comparing (2.39) to the expression for the kinetic energy of a
one-dimensional mechanical oscillator

T = q̇(t)2m/2, (2.40)

we obtain the so-called modal mass mi of mode imodal mass

mi ≡
x

dxdy ρ(x, y)d(x, y)ui(x, y)2. (2.41)

This defines the mass parameter we must use to describe the motion
of the coordinate qi(t) using the Langevin equations (2.33), or their
quantum generalization (2.35). Note that the numerical value of mi in
(2.41) depends on the normalization of the mode functions ui(x, y).

2.3 optical cavities

Consider an optical Fabry–Pérot cavity formed by two mirrors in vac-
uum separated by a distance L such that the round-trip path length
for light inside the cavity is p = 2L. Call the direction along the
cavity-axis (the longitudinal direction) z and the directions transver-
sal to it x and y.77 Optical cavity with

adopted coordinate system.

eigenmodes
The spatial electro-magnetic field distributions for the eigenmodes

of this cavity depend on curvature and shape of the mirrors. They
are approximately given by Hermite–Gaussian (Laguerre–Gaussian)
TEM-modes for square (round) mirrors [see KL66]. TEM is short for
transverse electro-magnetic, which means that, for these modes, the
electric and magnetic fields do not have components in the direction
of propagation (z) but only in the transverse directions. The eigen-
modes are labeled TEMmnq: The first two subscripts m, n ∈ N0 count
the nodes of the field in x and y (radial and azimuthal) direction for
square (round) mirrors. The third and last subscript q ∈ N (which is
usually omitted) counts the nodes in z-direction (q� 1).
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For plane waves, constructive interference after a roundtrip in the
cavity would occur for optical frequencies 2π · q · νFSR (q ∈N) where
νFSR = c/p is the inverse round-trip time in the cavity, also known
as the free spectral range (FSR). But the resonance frequencies of the resonance frequencies

TEMmnq-modes differ from those for plane waves due to an additional
phase per round-trip, called the Gouy phase [see KL66]. Since the
Gouy phase increases with the transversal mode numbers m, n, the
different eigenmodes of the resonator are, in general, non-degenerate.
However, because the Gouy phase does not depend on the longitu-
dinal mode number q, the frequency spacing ωmnq − ωmnq′ of modes
with the same transversal field distribution is still given by (q− q′) ·
2π · νFSR. Note that, for a cavity which is perfectly symmetric under
exchange of x and y, the modes TEMmnq and TEMnmq will be degener-
ate (in the case of Hermite–Gaussian eigenmodes). In theory, if x and
y can be interchanged, there should also be a degeneracy of horizon-
tal and vertical polarization for a given TEM-mode. But in practice,
they are usually slightly non-degenerate, probably due to an intrinsic
birefringence of the Bragg mirrors [Bie+09].

In our experiments, we only use fundamental eigenmodes TEM00q.
Experimentally, we ensure that only TEM00q-modes are significantly
populated by mode-matching the driving laser to the transversal field mode-matching

distribution of the TEM00q-modes at the input mirror. In addition, detuning
the frequency ωl of the driving laser is always close to the resonance
frequency ωc of only one TEM00q-mode. In other words, the detuning
of the laser with respect to the cavity mode

∆ ≡ ωl −ωc (2.42)

satisfies ∆ � 2π · νFSR. Because we work with resonators of high fi- single-mode case

nesse, this implies that there is only a single fundamental eigenmode
of the cavity, which we excite significantly—the one whose eigenfre-
quency is closest to the frequency of the driving laser. For this reason,
I focus on only one eigenmode of the optical cavity in what follows.

2.3.1 Classical description

Let us now define8 the relevant fields inside and outside the cav- 8 Convention for electric
fields and transmittivities:ity and their couplings such that we can write down the Langevin

equation for the intracavity mode: The mirrors 1 (input) and 2 have
amplitude transmittivities t1 and t2, respectively. The corresponding

amplitude reflectivities are denoted by ri =
√

1− t2
i . The input field

Ein
1 has a carrier frequency ωl, i.e. Ein

1 (t) ∝ exp (−iωlt). This leads to
the buildup of a stationary intracavity field E at the same frequency,
whose amplitude depends on the detuning ∆, as we will see below.
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For simplicity, we work in a frame rotating at the frequency ωl of
the driving laser, such that we can simply write E (t) or Ein

1 (t) in-rotating frame at ωl

stead of E (t) exp (−iωlt) or Ein
1 (t) exp (−iωlt). Note that most of the

expressions provided below regarding the time evolution of the intra-
cavity mode depend both on the definition of ∆ (here: ∆ ≡ ωl − ωc)conventions

and on the convention regarding the rotation direction of the driving
field (here ∝ exp (−iωlt)). In both cases, I follow the conventions in
[AKM14; Hof15]. They deviate from [Wil12] (who uses a driving field
∝ exp (+iωlt)) and from [Grö10] (who defines ∆ ≡ ωc − ωl). Note
that, for consistency with [Wie+15], I call the cavity amplitude decay
rate κ (instead of κ/2 as in [AKM14; Hof15]).

We always work with strongly overcoupled cavities (t1 � t2). In
this case, almost no light is transmitted. We therefore do not measureone-sided cavities

the transmitted field Eout
2 but only the reflected field Eout

1 . This allows
us to treat transmission through the second mirror as a loss mech-
anism. For simplicity, we therefore include all other optical losses
(scatter into other cavity modes or out of the cavity and absorption
inside the cavity) in the definition of t2.

Field amplitudes are (in analogy to the mechanical case) measured
in units of ground state uncertainty. In these units, the absolute
square of a traveling wave field amplitude expresses a photon flux.
Correspondingly, the input field amplitude Ein

1 is proportional to the
root of the photon flux, hence has units of

√
Hz. But the intracavity

field is more conveniently expressed in terms of the root of the intra-
cavity photon number α. To achieve this, E should be multiplied by
the root of the optical round-trip time T ≡ 1/νFSR . Hence, we define
α =
√

TE. Then, for ∆� 2π · νFSR, the following differential equationequation of motion for
intra-cavity amplitude for the evolution of α (t) depending on the input field Ein

1 (t) can be
derived [see Wil+09, sec. 2.3]:

α̇ (t) = (i∆− κ)α (t) +
√

2κ1Ein
1 (t) . (2.43)

Here, the parameters κi, (i = 1, 2) and κ are defined in terms of the
power transmission t2

i as follows:

κ ≡∑
i

κi ≡∑
i

νFSR · t2
i /2. (2.44)

(2.43) is analogous to the evolution of a harmonic oscillator at fre-
quency −∆ with damping κ and a driving term Ein

1 (t). Hence, the
optical cavity mode and the mechanical modes behave very similarly,
except that, in the case of the mechanical modes, we assumed an
asymmetric damping (affecting only the momentum quadrature and
not the full complex amplitude).

(2.43) implies that, without the drive Ein
1 , the intracavity field am-

plitude |α| decays with rate κ. Hence, the intracavity photon number
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decays with rate 2κ. For a continuous drive Ein
1 = const, the intra-

cavity field eventually acquires a steady-state value (α̇ = 0) given by

α =

√
2κ1

κ − i∆
Ein

1 . (2.45)

This the power buildup inside the cavity depends on the detuning
and is given by enhancement of

intra-cavity power|α| 2/T

|E1|2
=

2κ1νFSR

∆2 + κ2 . (2.46)

Hence, κ is not only the amplitude decay rate for the undriven cav-
ity, but also the power half width at half maximum (HWHM) of the
driven cavity.

On resonance, the power buildup (2.46) can be rewritten as

2κ1νFSR

κ2 =
2F
π
· κ1

κ
, (2.47)

where we introduced the finesse finesse

F ≡ 2π · νFSR

2κ
. (2.48)

The finesse relates the full width 2κ of an individual cavity resonance
to the frequency separation 2π · νFSR of neighboring modes. It is thus
a dimensionless measure of the frequency resolution of the cavity as
well as of the maximum power-buildup inside the cavity. Using the
definition (2.44) for κ, we can also express the finesse as follows

F =
2π

∑i t2
i

. (2.49)

Hence, the finesse depends only on the losses and not on the length
of the cavity. This is why the finesse is useful for comparing cavities
of very different dimensions.

Note that, for low transmission and for low scatter and absorption
losses (ti � 1), the round-trip optical power loss 1− r2 ≡ 1−∏i r2

i
can be related to the power transmission t2

i as 1− r2 ' ∑i t2
i . We can

therefore relate the finesse to the round trip losses 1− r2 as follows
(for F � 1):

F ≈ 2π

1− r2 ≈
π

1− r
. (2.50)

2.3.2 Quantum description

Quantum-mechanically, a cavity mode can be described as a har-
monic oscillator—analogous to the mechanical case. In the frame
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rotating at the frequency ωl = ωc + ∆ of the driving laser, and with-
out damping, its Hamiltonian Ĥo is given by [see AKM14, eq. (23)]Hamiltonian

Ĥo = −h̄∆â† â. (2.51)

I left out a zero-point contribution −h̄∆/2, since it is not relevant
in the following. The operators â† (â) are the creation (annihilation)
operators for photons in the cavity mode. They obey the canonical
commutation relation

[
â, â†] = 1.

In close analogy to (2.43), the time-evolution of the mode operator
â (t) in the Heisenberg picture in the presence of damping and under
the influence of external fields is given by [GC85]

˙̂a (t) = (i∆− κ)â (t) +
√

2κ1 âin
1 (t) +

√
2κ2 âin

2 (t) , (2.52)

where âin
1 describes the mode populated by the drive laser and âin

2
is a fictitious mode collecting all the loss channels.9 All the modes9 Convention for

mode operators. lumped together in âin
2 are initially in the vacuum state. Their contri-

bution to the dynamics of the intra-cavity mode â is therefore given
by vacuum noise.

As mentioned, we measure the reflected field. This field is de-
scribed by a mode âout

1 which can be expressed as a sum of the directlyreflected field

reflected part of the input field plus a fraction
√

2κ1 of the intracavity
field, which is leaking out via the input coupling mirror [GC85]:

âout
1 (t) =

√
2κ1 â (t)− âin

1 (t) . (2.53)

It is convenient to define the amplitude quadrature x̂ and phase
quadrature ŷ for the optical mode, in analogy to position and mo-quadratures

mentum for the mechanical mode:

x̂ ≡
(

â + â†
)

/
√

2, ŷ ≡
(

â− â†
)

/
(

i
√

2
)

. (2.54)

The quadratures satisfy the canonical commutation relation [x̂, ŷ] = i.
Then (2.52) can be rewritten in terms of x̂ and ŷ as follows:

˙̂x = −∆ŷ− κx̂ +
√

2κ1 x̂in
1 +
√

2κ2 x̂in
2 , (2.55)

˙̂y = +∆x̂− κŷ +
√

2κ1ŷin
1 +
√

2κ2ŷin
2 , (2.56)

where x̂in
1 , ŷin

1 , x̂in
2 , ŷin

2 are the quadratures of the input modes âin
1 , âin

2 ,
defined in analogy to (2.54).

2.4 optomechanical coupling

In an optomechanical cavity, the resonance frequency ωc and, corre-
spondingly, also the detuning ∆ depend on the position quadrature
q̂ of a mechanical mode (generally, they depend on many mechanical
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modes). In the simplest case of end-mirror-coupling (Section 2.4.1),
this is due to the cavity length changing with q̂. In the slightly more
complicated case of a membrane inside a cavity (Section 2.4.2), it
is due to the dependence of the membrane-induced phase shift on
the membrane’s position along the standing wave inside the cavity.
In both cases, we get a parametric dependence of the optical cavity
Hamiltonian Ĥo on q̂: parametric dependence of

cavity resonance on
mechanical positionĤo = Ĥo(q̂) = −h̄∆(q̂)â

†
â. (2.57)

This parametric dependence of ∆ on q̂ implies a coupling of mechan-
ical and optical degrees of freedom, which is referred to as dispersive
coupling (in contrast to dissipative coupling, in which the cavity decay
rate κ depends on q̂ [see AKM14, sec. III.B.]).

The amplitude of mechanical motion in quantum optomechanical
experiments is typically rather small compared to the optical length small motional amplitudes

scales. The zero-point uncertainty of our mechanical oscillators is
only on the order of 10−15 m, and, even at room temperature, the
thermal position deviation is only on the order of 10−12 m, whereas
the optical wave-length is on the order of 10−6 m. Therefore, the
cavity detuning changes only very little for typical values of q̂. Hence,
the Hamiltonian (2.57) is very well approximated using a first-order
expansion of ∆ around the point q = 0: linearization in q̂

Ĥo(q̂) ' −h̄
[
∆ (0) + q̂∆′ (0)

]
â

†
â, (2.58)

where ∆′ (q) ≡ ∂q∆ (q) is the derivative of the detuning with respect
to q (with q in units of ground-state uncertainty).

We define the single-photon coupling strength single-photon coupling

g0 ≡ −∆′ (0) = +ω′c (0) (2.59)

which quantifies the frequency shift of the cavity due to an increase in
the effective cavity length by an amount corresponding to the ground-
state uncertainty. Introducing the derivative of the cavity resonance
with respect to displacement z in SI-units

G ≡ ∂zωc (z) (2.60)

and recalling that the conversion factor from ground-state uncertainty
units to SI-units is

√
2q0, we can also write

g0 =
√

2q0 · G. (2.61)
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The optomechanical interaction is therefore, for the very small mo-
tional amplitudes typically achieved in micromechanical resonators,
very well described by the following interaction term:

Ĥi = h̄go q̂ â†â. (2.62)

Note that (2.62) is of third order in the mode operators which yields
a nonlinear interaction between mechanical mode and cavity mode.non-linear interaction

As discussed in Section 2.5, (2.62) can be approximated by a linear
interaction (quadratic in the mode operators), which is sufficient to
describe all experiments of this thesis.

Note also that the sign of go in (2.62) depends on the definition
of q̂. In this thesis, I always use positive values for the coupling.
(2.62) then implies that q̂ is defined such that increases of q̂ lead to
increased energy, hence to an increased cavity frequency ωc. In the
case of end-mirror coupling this means positive q̂ corresponds to a
decreased cavity length.

2.4.1 End-mirror coupling

To calculate the coupling g0 = ω′c (0), we have to calculate the depen-
dence of the cavity resonance on the mechanical position q around
its steady-state position (the origin of q by definition). The case of a
Fabry–Pérot cavity with a movable mirror is particularly simple:

ωc (q) =
c

2
(

L +
√

2q0q
) . (2.63)

The single-photon coupling in this case is given by

g0 = ∂q
c

2
(

L +
√

2q0q
)
∣∣∣∣∣∣

q=0

=
√

2q0
ωc

L
, (2.64)

which depends only weakly (via L) on the position of the oscillator.
The same type of coupling is observed in a variety of monolithic

microcavities including microdisks, microtoroids, and silica spheres
[see AKM14, section IV.C for an overview]. In these devices, mechani-
cal deformations of the microcavity also change the optical round-trip
path length, and therefore couple to the cavity mode.

2.4.2 Membrane coupling

A different type of dispersive optomechanical coupling is that of di-
electric materials inside optical cavities. This can be experimentally
realized in different ways [see AKM14, section IV.E for an overview],
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for example, with dielectric particles trapped in the field of a cavity.
Here we are interested in the case of thin dielectric films (membranes)
inserted into a Fabry–Pérot cavity such that the cavity axis is normal
to the membrane surface.

The idea is almost as simple as for end-mirror coupling: Inserting a
dielectric membrane into a Fabry–Pérot cavity changes the optical in- basic idea

tracavity path length and, therefore, also the resonance frequency ωc.
But the membrane-induced phase shift and, correspondingly, also the
cavity resonance frequency depend on the position of the membrane
with respect to the standing wave inside the cavity. This leads to a
coupling of membrane motion to the cavity mode.

[Wil12, sec. 3.3.1] provides the following approximate expression
of the coupling g0 (z) as a function of the membrane position z from
the center of the cavity

g0 (z) ' −
2q0ωc

L
|rm| ξ (λ, z, rm)

1− 2 (z/L) |rm| ξ (λ, z, rm)
, (2.65)

ξ (λ, z, rm) ≡
sin (4πz/λ)√

1− |rm|2 cos (4πz/λ)2
, (2.66)

where λ = 2π · c/ωc is the optical wave length, L is the cavity length
and rm is the reflectivity of the membrane at wave length λ. Impor-
tantly, (2.65) implies that the membrane coupling g0 is proportional
to the coupling

√
2q0ωc/L in the end-mirror case. In particular, g0 is

inversely proportional to the cavity length.
Note that, according to (2.65), the coupling g0 is approximately

periodic as a function of z with a period λ/2, i.e. periodicity of coupling

g0 (z + λ/2) ' g0 (z) . (2.67)

This is because also the intra-cavity field distribution is (up to sign)
periodic in z with period λ/2. Therefore, inserting a membrane at z
or at z + λ/2 has the same effect on the resonance frequency. Note,
however, that the periodicity of the coupling as well as the intra-cavity
field distribution is not perfect.

(2.65) also implies that there are positions z of the membrane at
which the coupling g0 (z) to the position q̂ becomes zero. At these quadratic coupling

points, the light field couples predominantly to q̂2, which—under the
right circumstances—allows to perform a QND-measurement of the
mechanical phonon number [see AKM14, sec. VI.B.2].

To calculate the coupling g0 (z) of a membrane inside a Fabry–Pérot
cavity from first principles, we have to find the cavity resonance calculating the coupling

using transfer matricesfrequency as a function of the membrane position z. This can be
achieved using the transfer matrix formalism [see Wil+09, ch. 3], which
allows to calculate the transmission and reflection of plane waves
from parallel layers of differing index of refraction. This formalism
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is sufficient to model the optomechanical system we are concerned
with,10 namely a cavity of length L with a membrane positioned at10 Membrane-cavity

system (light enters from
left):

Input
coupler

Back
mirror 

Si3N4
mem.

L
δz z

distance z from the back mirror: The input coupling mirror is mod-
eled as a multilayer Bragg reflector, followed by a vacuum gap of
length L− z, followed by the membrane of thickness d, followed by
another vacuum gap of length z, followed by yet another multilayer
for the back mirror.

Using the transfer matrix formalism, we can calculate the transmis-
sion through the whole structure as a function of membrane position
z and laser frequency. The frequencies of maximal transmission, for
a given membrane position z, are the resonance frequencies ωc (z).
Finally, we numerically differentiate the resonance frequencies ωc (z)
with respect to z to find G (z) = ∂zωc (z) and g0 (z) =

√
2q0 · G (z).

Note that calculations can be sped up considerably by assuming the
transmission of the multi-layer mirrors to be constant over the very
small range of wave lengths considered here (which is an excellent
approximation).

As an example, let us consider the latest iteration of our membrane
optomechanical cavity, for which L ' 5.5 mm and z ' 0.5 mm such
that the membrane sits close to the back mirror of the cavity. We
chose to put the membrane close to the end of the cavity because it
yields slightly higher coupling and because it increases stability and
facilitates alignment, as explained in Section 3.5.2. The membrane
thickness is d ' 50 nm, the real part of the refractive index of Si3N4

is n ' 1.99 (based on [Pol] and consistent with the spread of values
quoted in [Wil12, sec. 3.1.1]). Here, I used input coupler and back
mirror power transmissions of & 800 ppm and . 1 ppm, respectively,
corresponding to a finesse of the empty cavity of F ' 7.8× 103.

The results are plotted in Figure 2.1. As expected, both ωc (z) as
well as G (z) are periodic with a period of λ/2. To deduce the single-
photon coupling g0 (z) from this plot, we need to know the ground-
state uncertainty and the effective mass of the mechanical mode of
the membrane we are interested in.

2.4.3 Effective mass

The above calculations of the coupling assumed that, by changing the
position q of the mechanical mode, we change the cavity resonance
frequency ωc as if the whole oscillator (SiN-bridge or membrane) was
uniformly displaced. The mechanical modes of real oscillators, how-
ever, do not lead to a uniform displacement. Therefore, the effect of a
change of q on the cavity frequency ωc depends on how those parts
of the oscillator which are illuminated by the cavity mode are actu-
ally displaced. Consequently, also the optomechanical coupling g0

depends on the overlap between mechanical and optical mode. With
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Figure 2.1. Shift δωc (z) of cavity resonance frequency (top panel) and
its derivative G (z) (bottom) as a function of membrane displacement
δz (with respect to its nominal position at a distance of 0.5 mm from the
back mirror of the cavity). The shift δωc (z) is given with respect to the
nominal laser wave length of 1064 nm, but only its derivative matters
for our purpose.

our definition of the mode function in Section 2.2.1, the mode ampli-
tude measures peak displacement. But the light field does not always
“see” the peak displacement. Hence, the coupling is generally smaller
than suggested by above definitions.

The correction is, for high-finesse cavities, given by the overlap inte-
gral of normalized optical intensity I(x, y) (at the position of the me-
chanical oscillator) and mechanical mode function u(x, y) [PHH99] overlap integral

g0 → g0 ·
x

I (x, y) · u (x, y) dx dy. (2.68)

As expected, we get no correction for uniform displacement u (x, y) =

1, but a large correction if u differs significantly from 1 within the op-
tical spot11 or even oscillates within the optical spot (as for some high 11 Illustration of (2.68) for

the (3, 3)-mode of a square
membrane:

Mechanical mode u(x)

Optical intensity I(x)

x

order membrane modes). (2.68) can be understood naively by noting
that, in the mechanical ground state, only the light hitting the mechan-
ical oscillator at points of maximum displacement (corresponding to
u = 1) experiences the full shift corresponding to

√
2q0 · G whereas

at all other points the shift is suppressed by the factor u.
Note that historically, the correction

s
I (x, y) · u (x, y) dx dy has

been absorbed into the definition of q0 =
√

h̄/2mωm by replacing the
modal mass m in the definition of q0 by the so-called effective mass effective mass

meff = m/
(x

I (x, y) · u (x, y) dx dy
)2

. (2.69)
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This has the advantage of associating the mode-dependent correction
(2.68) with a quantity which anyway depends on the mode. But it
has, in my opinion, the disadvantage of obscuring the meaning of the
zero-point uncertainty. Defined in this way, the zero-point motion
does not measure the actual displacement of the membrane but only
the “displacement seen by the optical beam”.

To illustrate: For a 0.5 mm× 0.5 mm-membrane and an optical beam
with a 45 µm waist at the membrane position and no lateral displace-
ment, we get ' 83.5% for the overlap integral for the (3,3)-mode and
correspondingly meff,33 ≈ 1.43 ·m if m is the modal mass. For a 50 nm-
thick SiN-membrane, this yields meff,33 ≈ 9.9 ng.

2.5 linearized hamiltonian

In our experiments, the single-photon coupling g0 is too small to yield
observable effects. Fortunately, it can effectively be increased by dras-
tically increasing the number of photons which interact with the me-
chanical oscillator. To this end, we drive the cavity with a coherent
field with large amplitude. That is, the state of the input mode in thelarge coherent drive

Langevin equation in (2.52) for the cavity mode satisfies

〈âin
1 (t)〉 = αin

1 ∈ R, αin
1 � 1, (2.70)

where the expectation value αin
1 is constant in the frame rotating at the

drive frequency ωl and can be assumed real without loss of generality.
We know from (2.45), that—in the absence of optomechanical cou-

pling—a constant drive leads to a steady state intracavity amplitudeintracavity steady state

〈â〉 = α, α =

√
2κ1

κ − i∆
αin

1 . (2.71)

With optomechanical coupling, the existence of a steady state de-
pends on the detuning ∆ and, due to the nonlinearity of the optome-
chanical interaction, also on the driving strength αin

1 [Hof15, fig. 12

(a)].12 In what follows, I assume a stable steady state, since this is the12 For some parameters,
several stable steady states

may exist [Dor+83].
case of interest in our experiments.

Assuming now that the intracavity field has acquired a large con-
stant mean amplitude α due to the drive, it is useful to re-express the
intracavity mode operators as

â ≡ α + δâ, α ≡ 〈â〉 (2.72)

and expand the interaction Hamiltonian Ĥi in powers of α:expansion of interaction
Hamiltonian around mean

intracavity amplitude Ĥi = h̄go q̂ (α + δâ)
†
(α + δâ) (2.73)

= h̄go q̂ |α|2 + h̄go q̂
(

α∗δâ + αδâ†
)
+O

(
δâ†δâ

)
. (2.74)
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The first term h̄go q̂ |α|2 in (2.74) represents a static radiation pres-
sure force on the mechanical mode due to the DC part of the intra-
cavity field. It leads to a constant non-zero mean displacement of the
mechanical mode. We can drop this term by simply redefining the
origin for q̂ to coincide with the shifted mean position.

The last term in (2.74) can be neglected (compared to the second
term) assuming that typical fluctuations δâ are much smaller (in ab-
solute value) than the mean amplitude α. Hence, the dominant inter-
action term becomes

Ĥi ' h̄go q̂
(

α∗δâ + αδâ†
)
= h̄gq̂ (cos (θ) δx̂ + sin (θ) δŷ) (2.75)

where the linearized optomechanical coupling is defined as linearized coupling

g ≡
√

2 |α| go, (2.76)

θ ≡ arg (α) and the quadratures δx̂ and δŷ are defined as

δx̂ ≡
(

δâ + δâ†
)

/
√

2, δŷ ≡
(

δâ− δâ†
)

/
(

i
√

2
)

.

Note that the derivation of the linearized coupling presented here
is meant to be intuitive rather than rigorous. A rigorous derivation
should take the open-system dynamics into account. For a much
more thorough discussion of the linearization of the equations of mo-
tion around the steady state see [Hof15, sec. 1.3.1]. Note also that
[Hof15] defines g ≡ αgo/

√
2, i.e. a factor two smaller than in our

definition, which was chosen for consistency with [Wie+15].
(2.75) describes an interaction of the position quadrature q̂ of the

mechanical mode with a rotated quadrature cos (θ) δx̂ + sin (θ) δŷ of
the intracavity mode. The interaction strength g is tunable via |α|, tunable coupling

the root of the mean intracavity photon number. For constant drive
detuning ∆, we have

|α| exp (iθ) =
√

2κ1

κ − i∆
αin

1 =

√
2κ1

κ − i∆

√
Popt

h̄ωl
, (2.77)

such that the linearized coupling g, defined by (2.76), is simply pro-
portional to

√
Popt. g can thus be adjusted via the optical power Popt

of the external drive. An upper limit on Popt is, in current exper-
iments, usually imposed either by the maximally tolerable amount
of heating by absorption or the maximally tolerable level of classical
laser noise, both of which increase with Popt, or by in- or bi-stabilities
of the cavity.
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2.5.1 Beam-splitter and two-mode-squeezer

Since we always work in the linear regime, I now drop the δ in δâ, δx̂,
and δŷ. Hence, the interaction Hamiltonian is now written simply as

Ĥi = h̄gq̂ (cos (θ) x̂ + sin (θ) ŷ) . (2.78)

To get an intuitive understanding of this interaction, we can rewrite
Ĥi using the annihilation operators â (previously δâ) of the optical
intracavity mode and b̂ of the mechanical mode:

Ĥi =
h̄g
2

(
b̂ + b̂†

) (
e−iθ â + eiθ â†

)
(2.79)

=
h̄g
2

(
e−iθ âb̂ ++eiθ â†b̂†

)
+

h̄g
2

(
e−iθ âb̂† + eiθ â†b̂

)
. (2.80)

The free evolution of the annihilation operators â and b̂ (in the
Heisenberg picture, in the frame rotating at the drive frequency ωl =

ωc + ∆, and neglecting damping) is given byfree evolution

â (t) = â (0) exp (+i∆t) , b̂ (t) = b̂ (0) exp (−iωmt) . (2.81)

Therefore, in an interaction picture which accounts for this free evo-
lution, the first two terms in (2.80)two-mode squeezer

h̄g
2

(
e−iθ âb̂ ++eiθ â†b̂†

)
≡ ĤTMSS (2.82)

oscillate with ± (∆−ωm). Hence, for a blue-detuned drive satisfy-
ing ∆ ' ωm, this part of the interaction is roughly stationary (in
the interaction picture) and can therefore have a large effect, while
the last two terms in (2.80) are rapidly oscillating (at ' ±2ωm) and
are therefore effectively averaged out. (2.82) is called the two-mode
squeezing Hamiltonian because it is analogous to the Hamiltonian de-
scribing optical down-conversion which yields entangled two-mode
squeezed states. It describes joint creation and joint annihilation
of phonons and photons and thereby produces states with strong
phonon–photon-number correlations. For sufficiently low decoher-
ence and sufficiently pure initial states, entanglement can result. In
Chapter 5, I discuss different options for creation and detection of
entanglement based on this part of the optomechanical interaction.

For a red-detuned drive ∆ ' −ωm, on the other hand, the last two
terms in (2.80)beam splitter

h̄g
2

(
e−iθ âb̂† + eiθ â†b̂

)
≡ ĤBS (2.83)

rotate (again in the interaction picture) with ± (∆ + ωm) and, there-
fore, dominate the interaction. This part of the interaction is called
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the beam-splitter Hamiltonian since it coherently exchanges excita-
tions between the two modes, creating a phonon and destroying a
photon or vice versa. This interaction can swap the state of the me-
chanical mode onto the optical mode and vice versa. If, as usual, the
intracavity mode is much more weakly excited than the mechanical
mode and the cavity decay is much faster than the interaction, the
state swap (transferring mechanical excitations to the optical mode)
is simply sideband cooling seen from a different point of view.

For more information on the rotating-wave approximation (RWA)
which underlies the interpretation of the different terms in the Hamil-
tonian as beam-splitter and two-mode squeezer and the conditions
under which the RWA can be applied see [Hof15, sec. 1.2].

2.6 quantum langevin equations

Let me summarize all of the preceding by presenting the linearized
Langevin equations for the coupled optomechanical system. The ba-
sis are the quantum Langevin equations for the mechanical mode
(2.35) and the optical mode (2.52) together with the linearized interac-
tion. The resulting stochastic equations of motion for the Heisenberg
quadrature operators of the mechanical mode are mechanical part

˙̂q = +ωm p̂, (2.84)
˙̂p = −ωmq̂− γm p̂ + g (cos (θ) x̂− sin (θ) ŷ)−

√
2γm f̂ , (2.85)

where the thermal noise force f̂ satisfies (2.36).
Because it will be necessary for the discussion of the state estima-

tion experiment and for the simulations of the entanglement exper-
iment, I also include classical laser noise of the driving laser field
[Abd+11] in the equations for the intracavity mode: optical part

˙̂x = −κx̂ + ∆ŷ + g sin (θ) q̂ ++
√

2κ1 x̂in
1 +
√

2κ2 x̂in
2

. . . + 2
√

κ1 δαin
1 + |α| sin (θ) φ̇, (2.86)

˙̂y = −κŷ− ∆x̂ + g sin (θ) q̂ +
√

2κ1 ŷin
1 +
√

2κ2 ŷin
2

. . . + |α| cos (θ) φ̇, (2.87)

where δαin
1 (t) and φ̇ (t) are the classical amplitude and frequency

fluctuations of the drive field αin
1 (t). To be more specific, in a frame classical laser noise

rotating at the drive frequency ωl, I assume〈
âin

1 (t)
〉
=
(

αin
1 + δαin

1 (t)
)

exp (−iφ (t)) , (2.88)

where αin
1 is a constant mean amplitude and δαin

1 (t) and φ (t) are
small, zero-mean fluctuations in amplitude and phase, respectively.





3
E X P E R I M E N TA L S E T U P

In this thesis two experiments are discussed, optimal state estimation
and entanglement generation. The setups for both of them can be
broken down into four different functional blocks:13 13 Bird’s eye view of an

OM-experiment with flow
of optical signals (red) and
electrical signals (black).

light source : a laser, electro-optical modulators (EOMs) for creat-
ing optical sidebands, and optical filters (filter cavity for laser
noise reduction and grating filters for sideband selection)

om-cavity : a short, strongly over-coupled Fabry–Pérot cavity con-
taining either a thin SiN membrane or a micromirror, operated
in vacuum inside a refrigerator

detection : photo-detectors, amplifiers, electronic filters, and fast
AD-converters

locking electronics for locking the laser, the homodyne detec-
tors, and the optical filters

In what follows, I first describe those aspects which are very similar outline

in both experiments, namely the light source (Section 3.1), the detec- commonalities...

tion (Section 3.2) and the locking (Section 3.3). Then, I explain dif-
ferences between the two experimental setups—focusing first on the ...and differences between

the state estimation and
the entanglement setup

state estimation experiment (Section 3.4), then on the entanglement
experiment (Section 3.5). The difference lies mainly in the mechani-
cal resonators and optomechanical cavities—yielding wildly different
mechanical quality factors and interaction strengths (see Section 3.4.3
and Section 3.5.2, respectively). Other differences concern the use
of a second, detuned beam for laser cooling in the state estimation
experiment (Section 3.4.1) and the use of a second homodyne detec-
tion setup for simultaneous monitoring of both phase and amplitude
quadrature of the reflected light in the entanglement experiment.

3.1 light source

I first briefly describe our laser (Section 3.1.1) and the filter cavity
(Section 3.1.2), which used for laser noise reduction in the entangle-
ment experiment. Then, I present measurements of frequency noise
(Section 3.1.4) and amplitude noise (Section 3.1.3) of the unfiltered
and filtered laser.

29
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3.1.1 Laser

We use a 1064 nm continuous-wave (CW) laser, the Prometheus from
Innolight GmbH (now Coherent Inc.). We chose this model becauseNd:YAG NPRO laser

of its good noise performance in the 0.1 to 10 MHz frequency range,
which is the range we are mostly interested in. The Prometheus
is a laser-diode-pumped Nd:YAG-laser [Bye88]. It delivers roughly
1 W of CW output at 1064 nm. In addition, it can provide roughly
100 µW at 532 nm (phase-coherent with the main beam at 1064 nm).
The output of the Prometheus is single-mode in frequency, in trans-
verse mode shape, and in polarization.

The Prometheus is designed as a so-called non-planar ring oscil-
lator (NPRO)14. In this design [KB85], the laser cavity is perfectly14 Sketch of NPRO laser

crystal [from Pas] with
808 nm pump beam (blue

in sketch) and 1064 nm
laser beam (red)

monolithic, consisting only of the Nd:YAG laser-crystal with cut faces,
one of which (the input/output coupler face) is convex and reflec-
tion-coated while all other faces are totally internally reflecting. The
Nd:YAG laser-crystal is pumped with a laser diode at 808 nm.

Because the laser cavity is a ring oscillator, its eigenmodes are trav-
eling waves. This prevents spatial hole burning and allows single-single-mode

mode operation in frequency and transverse mode shape. Because
the beam hits the output coupler face under an oblique angle, the
reflectivity of this face and, correspondingly, the finesse of the laser
cavity are strongly polarization-dependent; this leads to a fixed po-fixed polarization

larization of the laser. Finally, the NPRO is also intrinsically unidi-
rectional, i.e. can oscillate in only one of its two counter-propagating
modes . This is important because backscattering of laser light intounidirectional

the counter-propagating cavity mode can introduce frequency noise.
The NPRO is intrinsically unidirectional because it acts like an opti-
cal diode consisting of a polarizer, a wave plate and a Faraday rotator:
The polarizer is the polarization-dependent output coupler reflectiv-
ity. The “wave plate” results from the beam path, which is non-planar
and therefore yields a net polarization rotation. The “Faraday rota-
tor” results from the Nd:YAG crystal (which has a positive Verdet
constant) being placed in a static magnetic field.

Because of its monolithic design, the NPRO laser cavity is highly in-
trinsically stable. Correspondingly, also the laser frequency is highlynoise properties

stable on short time scales, i.e. characterized by low frequency noise
at sideband frequencies of kHz or higher. Even on much slower
timescales, the laser frequency is relatively stable: In my experience,long-term stability

the unlocked laser fluctuates by at most some MHz on a timescale
of seconds. In addition, the temperature of the laser crystal is ac-
tively stabilized such that long-term drifts (over minutes) are also
very small (again on the order of some MHz).

In our experiments, we need to precisely control the laser frequency.frequency tunability

First, to tune the laser to one of the resonances of the optomechanical
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cavity. This requires slow (sub-Hz bandwidth) tunability over a range
of some GHz. Then, to lock the laser to the jittering optomechani-
cal cavity resonance, which requires fast (kHz bandwidth) tunability
over a range of some MHz.

For slow tuning of the Prometheus (over a range of 30 GHz and slow tuning via
temperaturewith a bandwidth on the order of Hz) we change the temperature of

the laser crystal. For fast tuning (over a range of 200 MHz and with a fast tuning via laser PZT

bandwidth of some 10 kHz) we apply high voltage to a PZT attached
to the laser crystal [Gmb03].

Nd:YAG NPROs such as the Prometheus are widely used, for ex-
ample as seed lasers for gravitational wave detectors [Zaw+02]. The further references

properties of Nd:YAG NPROs have therefore been studied in detail
[KB85; KNB87; CK91], in particular, their noise performance, noise
couplings [Que03] and stabilization [Bro99; Heu+04]. The specific
design of the Prometheus is based on [Fre+93; FTW95].

3.1.2 Filter cavity

Even though the classical laser noise of the Prometheus is intrinsically
low, it is still too high for the purpose of the entanglement experiment.
For this experiment, we need the amplitude quadrature x and phase noise requirements

for entanglementquadrature y of the laser light to be dominated by photon shot noise.
Let us denote the NPS for the amplitude and phase quadrature

of a hypothetical laser beam without classical noise by S(0)
xx (Ω) and

S(0)
yy (Ω), respectively—in contrast to Sxx(Ω) and Syy(Ω) for the actual

beam which also carries classical laser noise. Using this terminology,
we can define the “classical” amplitude and phase NPS S(cl)

xx (Ω) and
S(cl)

yy (Ω) as the difference between the full NPS and that of the ideal-
ized beam:

S(cl)
xx (Ω) ≡ Sxx(Ω)− S(0)

xx (Ω), S(cl)
yy (Ω) ≡ Syy(Ω)− S(0)

yy (Ω). (3.1)

Then, we can express the requirement of shot noise limitation by shot noise limitation

S(cl)
xx (Ω), S(cl)

yy (Ω)
!� S(0)

xx (Ω) = S(0)
yy (Ω). (3.2)

Note that, for both phase and amplitude quadrature, classical noise
depends quadratically on the optical power, whereas quantum noise
power depends only linearly on it: power dependence

S(cl)
xx (Ω), S(cl)

yy (Ω) ∝ P2
opt, (3.3)

S(0)
xx (Ω), S(0)

yy (Ω) ∝ Popt. (3.4)

Consequently, “shot noise limitation” as defined in (3.2) is a power-
dependent property and is easier to achieve at low optical powers.



32 experimental setup

The classical noise power S(cl)
xx (Ω) and S(cl)

yy (Ω) also depends strongly
on the sideband frequency Ω and is typically highest at low frequen-frequency dependence

cies, whereas shot noise is independent of sideband frequency. There-
fore, shot noise limited beams are much easier to achieve at high side-
band frequencies. Relevant for us are sideband frequencies close to
the frequencies of the mechanical modes of interest (between some
100 kHz and several MHz).

For the optical powers we need to use in the entanglement exper-laser noise suppression

iment (some 100 µW) and at sideband frequencies below 1 MHz, the
unfiltered laser is far from being shot-noise limited (see Figure 3.2).
Therefore, we filter the laser using a narrow-band filter cavity with a
HWHM-linewidth of κFC ' 50 kHz. A single pass through the filter
cavity yields, at sideband frequencies Ω � κFC, a quadratic suppres-
sion15 of the classical laser noise power (proportional to κ2

FCΩ−2).15 Quadratic suppression
after single pass We use a triangular filter cavity,16 whose design is described in

16 Triangular filter cavity:

PZT out

in

refl.

detail in the PhD thesis of Hannes Böhm [Böh07]. The body of the
cavity is machined from a monolithic block of Invar. It holds two flat
mirrors which serve as in- and output coupling mirrors and a slightly
curved end mirror, mounted on a PZT stack to allow locking the filter
cavity to the laser.

Because, in this triangular design, the laser beam hits the in- and
out-coupling mirrors under a highly oblique angle, the transmissivi-
ties of the in- and out-coupling mirrors differ by more than a factor
of ten between H- and V-polarized light (see Table 3.1). This leadspolarization-dependent

transmission and finesse to a polarization-dependent finesse and linewidth (again, with differ-
ences of more than a factor of ten). Additionally, there is a birefrin-
gent splitting of the cavity resonances for the H- and V-polarization.
Therefore, we can lock the filter cavity to one or the other polariza-
tion and thereby choose between two different filter cavity linewidths
which we refer to as the “high finesse (HF) mode” and the “low fi-
nesse (LF) mode”, respectively.

For the entanglement experiment, we use the filter cavity in HF
mode. Note that, in HF mode, power transmission is much smallerreduced transmission in

high-finesse mode than in LF mode (see Table 3.1). This is because the ratio of trans-
mission losses through the input-/output-coupling mirrors to the re-
maining round-trip losses is much smaller in HF than in LF mode.

Fortunately, we can use the filter-cavity in the low-finesse mode
during alignment because the transmitted beam of the low-finesse
mode is geometrically indistinguishable from that of the high-finesse
mode. Working in the low-finesse mode is more convenient for align-alignment using the

low-finesse mode ment because the filter cavity yields more optical power and is also
easier to lock in this mode.

Another advantage of the triangular filter cavity is that it can easilydouble-pass filtering

be used in a double-pass configuration [HR05] in order to achieve an
even stronger quartic suppression17 of high-frequency noise. We im-

17 Quartic suppression
after double pass
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parameter low-finesse high-finesse

Power transmission (resonant),
single pass 69 % 21 %

double pass 43 % 4.7 %

HWHM-line width κFC/2π 650 kHz 48 kHz

Free spectral range νFSR 0.50 GHz 0.50 GHz

Finesse F 380 5200

Power transmission Tin = Tout 6.8 h 0.28 h
of in- and output coupler

All other round-trip losses Tloss 2.8 h 0.65 h

Table 3.1. Parameters of the filter cavity. Power transmission was
measured directly. κFC inferred from noise suppression measure-
ments (see Figure 3.4). νFSR calculated from nominal round-trip length
p = 60 cm. F calculated from νFSR and κFC. Transmittivities Tin, Tout
for in- and output coupling mirrors and remaining round-trip losses
Tloss calculated from F and single-pass power transmission (assuming
Tin = Tout).

plement double-pass filtering as sketched in Figure 3.1: We reflect the
transmitted light back into the filter cavity using a flat mirror directly
behind the output coupling mirror of the filter cavity. Thereby, we
subject the laser light to a second independent filtering step. The re-
flected light propagates in the opposite direction inside the filter cav-
ity and leaves the filter cavity in coincidence with the incoming beam
but propagating in the opposite direction. A simple optical diode
built from a quarter-wave plate, a Faraday rotator, and a polarizing
beam splitter (PBS) is then sufficient to separate the (unfiltered) in-
coming beam, from the (doubly filtered) returning beam. In a linear
cavity, we would not be able to implement double-pass filtering in
this way because the returning beam would geometrically coincide
with the directly reflected beam. In the triangular cavity, however,
the directly reflected beam is reflected under an oblique angle and is
therefore spatially separated from the doubly filtered beam.

In the following, I present measurements of the amplitude noise
(Section 3.1.3) and frequency noise (Section 3.1.4) of the laser—unfil-
tered, as well after single- and double-pass through the filter cavity.

3.1.3 Amplitude noise

We measure the amplitude noise of our laser using direct detection
on the photodetectors of our homodyne detectors. This yields the measurement technique

combined classical amplitude noise and shot noise. To obtain the
NPS of only the classical amplitude noise we subtract the shot noise
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in

PZT

out

refl.
λ/4

Faraday
rotator

PBS

F
C

Figure 3.1. Triangular filter cavity in double-pass configuration. Af-
ter the first pass (red lines) through the filter cavity (FC), the light
is reflected back into the FC to complete a second filtering step (yel-
low). The doubly filtered beam is spatially separated from the incom-
ing beam using an optical diode—a quarter wave plate (λ/4), a Faraday
rotator, and a PBS. The error signal for locking the filter cavity is gen-
erated from the light reflected at the input coupler in the first pass.

NPS, which we measure separately using the difference current from
two balanced detectors. After subtraction of the shot noise, we divide
by the shot noise NPS to obtain the classical amplitude noise NPS in
units of shot noise. This also takes care of frequency dependencies of
the photodetector gain. All measurements are corrected for electronic
dark noise. For more details on the amplitude noise measurements,
see [Wie+15, Supplemental Material, sec. II.A.2].

Amplitude noise levels are reported in units of shot noise at 1 mW.classical amp. noise
referenced to

shot noise at 1 mW
A classical noise level of 10 dB at sideband frequency f , for example,
means that classical amplitude noise is ten times stronger (in power
density) at frequency f than shot noise, for a 1 mW beam. In fact,
I measured at 15 mW optical power and rescaled the results to the
noise level at 1 mW in order to increase measurement precision.

3.1.3.1 Unfiltered amplitude noise

The classical amplitude noise of the unfiltered, free-running (i.e., un-
locked) laser is shown in Figure 3.2. For 1 mW optical power, classical
amplitude noise of the unfiltered laser is much higher than shot noiseunfiltered laser

dominated by
classical amplitude noise

from DC to around 5 MHz, even with the noise eater running. In the
entanglement experiment, we typically use at most some 100 µW to
drive the optomechanical cavity. But even for 100 µW—which corre-
sponds to a factor of ten reduction in the ratio of classical to shot
noise, compared to Figure 3.2—the unfiltered laser is not shot noise-
limited below 4 MHz. Therefore, we need to filter our laser before
we can hope to measure quantum entanglement. Below, I present
measurements of the classical amplitude noise after single-pass and
double-pass filtering (Section 3.1.3.3). These serve as input for con-
structing suitable noise models for the Kalman filter, as well as for
simulations of the entanglement experiment. I also evaluate the trans-
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Figure 3.2. Classical amplitude noise of the unfiltered laser with noise
eater (blue) and without it (green), in units of shot noise at 1 mW
(gray line). Both with and without the noise eater, a broad classi-
cal noise background extends from DC to around 3 MHz. The noise
eater reduces classical noise by around 10 dB at low frequencies and
by around 40 dB at the frequency of the relaxation oscillation peak
(roughly 1 MHz).

fer function of the filter cavity (Section 3.1.3.3). Some additional am-
plitude noise plots are provided in the appendix, in Section B.1.

3.1.3.2 Amplitude noise suppression

Figure 3.3 shows the effect of the filter cavity on the classical ampli-
tude noise—for both the high-finesse and low-finesse mode, and for
a single pass, as well as a double pass. As expected, noise at high
sideband frequencies is removed most effectively by a double pass
through the high finesse filter cavity;at 1 mW, the resulting beam is shot noise limited after

high finesse filter cavityshot noise limited above 200 kHz. In theory, the double pass should
significantly outperform the single pass at high sideband frequencies.
In practice, however, the double pass is only slightly better than the
single pass (see Section B.1.2 for more on this). Both high finesse fil-
ter options are significantly better than any of the low finesse filter
options.

In all cases, the filter cavity adds significant amounts of amplitude
noise at very low frequencies (below 100 kHz). This is most likely due added low-frequency noise

to an unstable lock of the filter cavity to the laser (see Section B.1.1
for some ideas regarding this effect).

3.1.3.3 Filter cavity transfer function

Figure 3.4 shows the suppression of classical amplitude noise—defined noise suppression curves
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Figure 3.3. Classical amplitude noise for the unfiltered laser and the
different filter options. At high frequencies, above roughly 100 kHz,
amplitude noise is reduced by filtering and is smaller for high-finesse
compared to low-finesse filtering and for double-pass compared to
single-pass filtering. At low frequencies, amplitude noise is increased
by filtering and the ordering of the different filter options with respect
to resulting noise levels is exactly inverted. Note that the laser was
free-running and the noise-eater was switched on. The measurement
noise floor at around −20 dB results from shot noise.

as the ratio of filtered to unfiltered noise power spectral density—due
to a single pass through the filter cavity. The theoretical expectation
for the noise suppression at sideband frequency Ω assuming a cavity
linewidth κFC is given by

1

1 + (Ω/κFC)
2 , (3.5)

which is the square of the magnitude of the filter cavity transfer
function [see e.g. BTD01]. The filter cavity line width κFC (the only
free parameter of the transfer function) has been determined by fit-
ting the observed suppression at higher frequencies, yielding κFC =

2π × 650 kHz for the low-finesse filter cavity and κFC = 2π × 48 kHz
for the high-finesse filter cavity. Expected and observed suppression
agree very well above 200 kHz. At lower frequencies, we observe a
deviation from the expected suppression due to added noise, which
is likely caused by an unstable lock of filter cavity to laser (see Sec-
tion B.1.1).
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Figure 3.4. Amplitude noise suppression for single-pass filtering.
Green and blue traces show measurements (light) and theory (dark)
for the filter cavity in low-finesse and high-finesse mode, respectively.
Below 200 kHz, the measured noise suppression is much smaller tan
expected. Below 100 kHz, the filter cavity even adds amplitude noise,
probably because of an imperfect lock of the filter cavity to the laser
(see main text). At high frequencies, the measurements of the noise
suppression are limited by shot noise.

3.1.4 Frequency noise

To measure the laser frequency noise we send the laser light onto a
fiber-based Mach–Zehnder interferometer (MZI) with unequal arm
lengths.18 This interferometer converts frequency noise at its input 18 MZI with

unequal arm lengths:

PZT   

ΔL

into differential phase noise at its output. The measurement tech-
nique (sometimes also referred to as “delayed self-homodyning”) is
described in more detail in the appendix (Section B.3). Here, I present
only the main results. Some additional plots of frequency noise
and frequency noise suppression are provided in the appendix (Sec-
tion B.2).

Note that frequency noise is given in units of Hz/
√

Hz (hence as
noise amplitude spectral densities), whereas noise suppression is given
in units of dB (as suppression in noise power). Every measurement
has been performed for up to three arm length differences of the
MZI and independently calibrated. Hence, we obtain up to three
independent measurements of the frequency noise. To give an idea of
the systematic uncertainties, I plot all noise spectral densities in this
section as a band between the minimal and maximal values across
all measurements. Of course, this does not prove that there are no
systematic errors larger than the indicated spread.
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Figure 3.5. Frequency noise of the free-running laser (blue). Between
100 kHz and 1 MHz, the expected 1/ f -dependence (black) of the fre-
quency noise is observed. Below 100 kHz the frequency noise is sup-
pressed due to the interferometer lock, which acts as a high-pass filter.

3.1.4.1 Unfiltered laser

Figure 3.5 shows the frequency noise of the unfiltered (free-running)
laser. Up to around 1 MHz we observe a 1/ f -dependence, consis-
tent with the frequency dependence measured in [Trö+09].19 At low19 The measurements in

[Trö+09] do not extend
beyond 1 MHz.

frequencies (� 100 kHz), this behavior is masked by the lock of the
Mach-Zehnder-interferometer used for the frequency noise measure-
ment. This lock stabilizes the relative phase difference between the
two interferometer arms at low frequencies and thereby acts like a
high-pass filter in our frequency noise measurement.

Note that I found the frequency noise to have roughly 4 times larger
amplitude than specified by the manufacturer’s customer support
(the latter being consistent with measurements on a similar NPRO
laser reported in [Trö+09]). As a consistency check, we can look at
the sideband cooling performance which can be limited by classical
frequency noise: A given frequency noise level (close to the mechani-
cal resonance) implies a minimum for the phonon number which can
be achieved by sideband cooling [RA09]. Our laser was previously
used to demonstrate sideband cooling to about 30 thermal phonons
[Grö+09b]. Assuming the experimental parameters of [Grö+09b], I
obtain a frequency-noise limited thermal phonon number of ∼ 251,
inconsistent with the cooling to ∼ 30 thermal phonons. Assuming
instead the 4 times lower noise level specified by the manufacturer, I
obtain a minimal phonon number of ∼ 16, consistent with [Grö+09b].
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Unfortunately, I cannot resolve this inconsistency: I have performed
the noise measurements and calibrations as carefully as possible but,
of course, cannot completely exclude a systematic error in the mea-
surement. On the other hand, our laser has been in heavy use for
roughly ten years and it is not inconceivable that the noise perfor-
mance did indeed degrade significantly over these years.

3.1.4.2 Frequency noise suppression

Figure 3.6 shows how the filter cavity reduces classical frequency
noise. As expected, frequency noise at high sideband frequencies
is reduced most effectively by a double pass through the high fi-
nesse filter cavity. Contrary to expectations, the double pass is only
marginally better than the single pass (in high finesse mode), how-
ever, and the advantage vanishes for sideband frequencies larger than
200 kHz. At these frequencies, however, already the single pass (in
high finesse mode) starts to deviate from the expectation (see plots
of the measured and expected noise suppression in Figure B.5). This
suggests that both high finesse measurements are limited by a com-
mon measurement noise background above 200 kHz. The measure-
ment noise floor is likely given by background phase noise induced
by the delay fiber.

Therefore, the measurements for the high-finesse filtered frequency
noise are upper limits on the actual frequency noise above 200 kHz.20 20 Note however that, for

double-pass high-finesse
filtering, also the
amplitude noise
suppression is weaker than
expected (see
Section B.1.2). Hence, it is
possible that we also do
not reach the expected
suppression in phase noise.

Since even with these (likely overly pessimistic) measured noise lev-
els, entanglement detection is possible according to the simulations
in Section 5.4.2.2, I did not investigate the limiting noise background
further.

3.1.4.3 Filtering of actuator inputs

It is important to realize that the noise performance of a laser system
can easily be spoiled. Particular attention has to be paid to all actua-
tors: Their inputs must be carefully filtered such that only the desired
feedback is achieved and no unwanted noise is introduced at higher
frequencies. In general, the faster the actuator, the more critical for
noise performance at high sideband frequencies.

The most critical actuator in our case is the laser PZT, which we
actuate to lock the laser frequency to the optomechanical cavity. The
actuation signal is produced by a digital PID, HV-amplified and then
fed into the laser PZT using a BNC connection. Dark noise of the
locking electronics or the HV amplifier can be enough to induce sub-
stantial added frequency noise.

As an illustration, Figure 3.7 compares the frequency noise of the
laser with the laser PZT connected to the HV amplifier (without filters
and without active feedback) to the case of a disconnected laser PZT. locking electronics can add

noise at PZT resonances
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Figure 3.6. Classical frequency noise for the unfiltered laser and the dif-
ferent filter options in comparison. Above roughly 40 kHz (500 kHz),
frequency noise is reduced by filtering with the high finesse (low fi-
nesse) filter cavity and is smaller for high-finesse compared to low-
finesse and for double-pass compared to single-pass filtering. At fre-
quencies above 200 kHz, the high finesse measurements are limited by
a common measurement background, likely caused by phase noise in-
duced in the delay fiber.

The difference is clearly visible and significant, with an added noise
of more than 10 dB for some resonances of the laser PZT.

This added high-frequency noise must be taken care off by care-
fully filtering the feedback voltage right before the actuator. We im-
plement a suitable filter by adding a large resistance (154 kΩ) before
the laser PZT, which, together with the capacitance of the PZT (nom-
inally 2.5 nF) forms a low-pass filter cutting off at roughly 0.4 kHz.

3.1.4.4 Locking-induced noise

Does filtering the actuation signal prevent the introduction of fre-
quency noise when locking the laser to the optomechanical cavity?
To answer this question, we compare the out-of-loop frequency noise
for the locked and unlocked laser after a single pass through the high-
finesse filter cavity. Figure 3.8 shows that we are not perfectly suc-
cessful in filtering the feedback voltage such that some added noise
remains in the range from 500 kHz to 1 MHz. Nevertheless, the dis-
crepancy between locked and unlocked case is much less drastic than
the discrepancy between the connected and the disconnected PZT in
Figure 3.7. Hence, to a large extent, we achieve the desired effect by
filtering the actuation signal.
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Figure 3.7. Effect of an unfiltered actuator input on the frequency noise
of the unfiltered, free-running laser. When the laser PZT is connected
to a high-voltage amplifier with nominally constant output (red), we
observe many additional sharp noise peaks above 100 kHz compared
to the case of a disconnected laser PZT (blue, semi-transparent). We
attribute this added noise to mechanical resonances of the laser PZT
being excited by the dark noise of the amplifier. Careful filtering of the
feedback signals is therefore crucial.

Single pass, high finesse filter.

Figure 3.8. Effect of locking the laser to the optomechanical cavity
on the out-of-loop frequency noise (after single-pass through the high-
finesse filter cavity). Frequency noise for the locked (red) and unlocked
(blue) laser coincides for most sideband frequencies. At low frequen-
cies (around 10 kHz), acoustic vibrations lead to frequency fluctuations
of the optomechanical cavity which are then imparted to the laser via
the lock loop. At higher frequencies, between 500 kHz and 1 MHz, we
observe some added noise due to excited resonances of the laser PZT.
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3.1.5 Noise models for simulations and state estimation

For the simulations of the entanglement experiment (Section 5.4.2.2),
as well as for the Kalman filter (Section 4.4), we need realistic mod-
els of the laser noise—state space models whose spectral response is
designed such that their output (when driven with white Gaussian
noise) has the measured frequency dependence [see Wie+15, Supple-
mental Material, sec. I.B., II.B., for more information]. For the simula-
tions of the entanglement experiment, we use a model for the ampli-noise model for

entanglement simulations tude and frequency noise based on the measurements after double-
pass high-finesse filtering (dark green spectra in Figure 3.3 and Fig-
ure 3.6). For the state estimation experiment, we worked with the un-
filtered laser beam, hence the amplitude and frequency noise model...and for Kalman filtering

in this case matches the measurements on the unfiltered beam (gray
spectra in Figure 3.3 and Figure 3.6). Note that, for the Kalman filter,
the noise models were actually identified using measured time traces
not spectra, as explained in Section 4.3.2.

3.2 detection

OM-cavity

detec-
tion

To obtain information about the state of the mechanical oscillator,
we measure light leaking out of the optomechanical cavity. Our op-
tomechanical cavities are nearly one-sided (i.e. strongly over-coupled)
such that most of the light leaks out on the input coupler side and
almost no light is transmitted. Therefore, we measure only the light
reflected from the input coupler, which we separate from the incom-
ing light using a Faraday rotator, a quarter wave plate and a PBS.21

21 Optical diode
for separating incoming

from reflected light

A small fraction (usually, on the order of a µW) of the reflected light
is split off and detected directly on a fast photo-diode to generate the
PDH error signal (see Section 3.3.2). The rest of the reflected light is
measured using homodyne detectors.

3.2.1 Homodyne detectors

Our homodyne detection setup are sketched in Figure 3.9. The signal
beam (optical power between some µW and some 100 µW) is over-
lapped with a local oscillator (LO) beam (power typically 5 to 15 mW)
on a 50:50 beam splitter. The relative phase of LO and signal is sta-
bilized by feedback to a mirror mounted on a PZT—to 0° (90°) for
measuring the amplitude (phase) quadrature. The interference of sig-
nal and LO is detected on two fast photodetectors (described in more
detail in Section 3.2.2).

The photovoltages of the two detectors are subtracted with an ana-post-processing of
detector signals logue circuit, then amplified using a fast voltage amplifier (DHPVA-

200 by FEMTO) with a bandwidth of 200 MHz and a (power) gain
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Figure 3.9. Homodyne detection setup. Two balanced photodetectors
measure the interference of signal and local oscillator (LO) beam. The
relative phase of the two beams is stabilized (at low frequencies) using
a mirror mounted on a piezo (PZT). The difference of the photodetector
outputs is amplified, low-pass-filtered and digitized.

between 10 dB and 60 dB. The resulting signal must be low-pass fil-
tered to suppress a strong modulation at 20 MHz,22 which would 22 The 20 MHz

modulation is required for
the PDH error signal (see
Section 3.3.2).

otherwise consume too much of the dynamic range of our data acqui-
sition (DAQ)-system. Therefore, the amplifier output is filtered with
a passive 12 MHz-low-pass filter. Finally, the filtered voltage is digi-
tized with a fast DAQ system (PXIe5122 from National Instruments)
at a sampling rate of roughly 100 MHz and a resolution of 14 bit and
streamed to a RAID-system.

Note that, for the state estimation experiment, the 50:50 beam split-
ter was emulated using polarization optics: In this scheme, LO and beam recombination using

polarization opticssignal are initially orthogonally polarized—one in H, the other in V.
Next, both beams are combined into the same spatial mode using a
PBS. Using a half-wave plate (HWP), their polarizations are rotated
by 45° to (H+V) and (H-V). The signal and LO beams, which are now
both diagonally polarized, can then both be split 50:50 into H and V
on a second PBS such that they interfere on both detectors.

3.2.1.1 Phase quadrature measurement

To measure relative phase fluctuations between LO and signal beam,
we stabilize the relative phase of the two beams to 90° (at low frequen-
cies). If the dominant contribution to the relative phase fluctuations is
due to the signal beam, this amounts to a measurement of the phase
quadrature of the signal beam. There are two relevant noise contri- relevant noise

contributionsbutions in this measurement: Amplitude noise and common phase
noise [see Wie+15, Supplemental Material, A.II.3].

The contribution of amplitude noise to the measured signal is neg-
ligible if the two detectors are carefully balanced, i.e. if they detect ex- amplitude noise

actly the same optical power. For careful balancing, amplitude noise
is suppressed by more than 45 dB as compared to the unbalanced
case. Note that balancing also requires equal photo-detector gains
and photo-diodes with matching quantum efficiency [see Böh07, sec-
tion 2.3.1].
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Common phase noise of LO and signal only contributes to the sig-
nal if there is a delay between LO and signal beam, i.e. if the optical
path lengths of signal and LO are different. This is because commoncommon phase noise

fluctuations in phase correspond to common fluctuations in instanta-
neous frequency and, without a delay between LO and signal, these
fluctuations occur simultaneously and cannot be measured with a
photodetector. By matching the relative path length of the LO and
signal beam to within some cm, we can completely suppress the con-
tribution of common phase noise in the frequency range of our inter-
est. In practice, we minimize the path length difference as follows:matching path lengths

for signal and LO We modulate the laser frequency by applying a modulation signal to
the laser PZT, thereby creating a strong common phase noise signal
on the LO and signal beam. Then we minimize the resulting modula-
tion of the homodyne difference signal by adjusting the relative path
length.

3.2.1.2 Amplitude quadrature measurement

By locking the relative phase of LO and signal beam to 0°, we can
measure the amplitude quadrature of the signal beam [see Wie+15,
Supplemental Material, A.II.3]. In this case, we are not sensitive to
common or relative phase noise. But we are sensitive to amplitude
noise of the LO (which we were able to avoid in the phase quadratureamplitude noise

measurement by balancing the detectors).
For the state estimation experiment, this additional noise is not a

problem as long as it is taken into account in the state space model
describing the measurement. For the entanglement experiment, how-
ever, we want to avoid this noise. We therefore filter the laser such
that its amplitude quadrature is shot noise limited at the optical
power detected by the photodetectors (up to 10 mW) and for the fre-
quency range of interest (above 400 kHz); see Figure B.2.

3.2.2 Photodetectors

Our photodetectors (consisting of photodiodes and detector electron-
ics) have to satisfy two main requirements. They need to be fast
enough to record the mechanical signals in the range from 0.1 to 10 MHz
and they must provide a good signal-to-noise ratio. For the photodi-
odes, this means a large bandwidth and a high quantum efficiency.
Large-area InGaAs photodiodes satisfy these requirements. For thehigh-efficiency,

high-bandwidth
photodiodes

state estimation experiment, we used the JDSU ETX 500, which have
a large bandwidth (due to their low capacitance of nominally below
50 pF) and a reasonably high quantum efficiency (measured to be be-
tween 80 % and 90 % in [Grö10, Table 4.1]). For the entanglement
experiment, we switched to different diodes from Laser Components
which achieve even higher quantum efficiencies of around 95 %.
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The detector circuits, on the other hand, need to provide a low
noise-equivalent power (NEP). Our detector circuits, which were de- detector circuits

with low NEPsigned by Hannes Böhm [Böh07, section 2.3.1], achieve this by split-
ting the photodiode voltage at ∼30 kHz into a DC and an AC com-
ponent. This allows us to strongly amplify the weak AC component
without saturating the amplification circuit with the DC component.
Thereby, dark noise can be overcome already for low optical powers
of around 1 mW (typically, we use at least 5 mW LO power).

3.3 locking

In our experiments, there are two different types of locks: Homodyne
locks which ensure a stable phase between local oscillator and signal
light (Section 3.3.3) and cavity locks which ensure a stable relative
frequency of the laser and the optical cavities. The cavity locks come
in different forms—Pound–Drever–Hall (PDH) lock (Section 3.3.2),
Hänsch–Couillaud lock (Section 3.3.1), and tilt lock—but they are all
based on the same idea, which I will briefly explain.

We want to stabilize the detuning ∆ ≡ ωl − ωc between laser (fre-
quency ωl) and cavity (frequency ωc) to a constant value. To do this, basic idea of cavity locks

we need an error signal ε (∆) which satisfies

ε (∆) = const× ∆ +O
(
∆2) , (3.6)

i.e., which is proportional to ∆, at least for small ∆. Now consider the
laser field before and after reflection at the cavity and, in particular,
its carrier components Ein

0 and Eout
0 at frequency ωl. From (2.45) and

(2.53) we obtain (in the frame rotating at ωl)

Eout
0 /Ein

0 =

(
2κ1

κ − i∆
− 1
)

(3.7)

The relative phase ∆φ of Eout
0 with respect to Ein

0 is therefore23 23 Phase ∆φ of reflected
light versus detuning ∆:

ΔΦ

π/4

κ

-π/4

-κ Δ

0

0

∆φ ≡ arg
(
Eout

0 /Ein
0
)
=

κ

κ2
1 − κ2/2

∆ +O
(
∆3) . (3.8)

Hence, ∆φ satisfies condition (3.6) and therefore qualifies as a good
error signal.

But to measure ∆φ we need a stable phase reference, i.e. a reference
whose phase does not change with the detuning. Components of the
reflected light field which are far off-resonant could provide such a
stable reference, since their phase does not vary with the detuning.
The different cavity locking schemes described below differ only in
how they obtain the required off-resonant light fields.
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3.3.1 Hänsch–Couillaud and tilt lock

Our filter cavity (described in Section 3.1.2) is strongly birefringent.
We can therefore lock it to the laser using the Hänsch–Couillaud tech-
nique [HC80], in which the phase reference is provided by an off-Hänsch–Couillaud lock

resonant linear polarization mode. If, for example, we lock on the ver-
tically polarized cavity eigenmode, any horizontally polarized light
is automatically off-resonant. Using a half-wave plate we can divert
a small fraction of the incoming light into the unwanted horizontal
polarization. In reflection, we can generate an error signal from the
interference of the vertical (resonant) and horizontal (off-resonant)
polarization components as follows. We rotate H and V by 45° using
another half-wave plate and then project onto H and V again using a
PBS. In the output ports of the PBS, the two components interfere de-
pendent on ∆. We subtract the intensities measured in the two output
ports which yields an error signal proportional to ∆.

In the state estimation experiment, we use a broad Fabry–Pérot fil-
ter cavity to select a particular optical sideband, which is separated
from the carrier by several GHz (see Section 3.4.1). To lock this cavity
to the desired sideband, we use a tilt lock. In contrast to the Hän-tilt lock

sch–Couillaud lock, tilt locking does not rely on birefringence, but on
the non-degeneracy of transversal eigenmodes of the cavity. In our
case, TEM10 is off-resonant when TEM00 is resonant, such that we can
use TEM10 as a phase reference when locking to TEM00. To get some
light into TEM10, we displace the beam slightly after mode-matching
it to TEM00. To obtain an error signal, we need interference between
the reflected TEM00- and TEM10-components. But TEM10 and TEM00

will not produce an interference signal on a regular detector, since
their field distributions are orthogonal (in a plane perpendicular to
the propagation direction). Interference between TEM00 and TEM10

can be observed, however, on a so-called split photodiode, which
detects the difference in optical intensity between the left and right
half of the diode. The tilt lock is described in more detail in [Grö10,
sec. 4.3.2].

3.3.2 Pound–Drever–Hall lock

We need to actively stabilize the laser frequency to the resonance fre-
quency of the OM-cavity because the cavity resonance jitters strongly
due to acoustic noise. In our cryostats, the main source of noise isacoustic noise

the 1.5 kHz-rotation of the turbo vacuum pump. The resulting jitter
of the cavity resonance can be as large as several line-widths of the
OM-cavity.

We use a Pound–Drever–Hall lock (PDH) lock [Dre+83a; Dre+83b;
Bla01] to stabilize the detuning between laser and optomechanical
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cavity. The PDH lock works for any cavity, even if it is not birefringent
and all transversal modes are degenerate. It uses optical sidebands off-resonant sideband as

stable phase referenceat frequencies far from resonance (but in the same spatial and polar-
ization mode) as a stable phase reference for the carrier phase. Since
theory and some practical aspects of the PDH lock are discussed at
length in [Grö10, sec. 4.3.2], I only sketch the basic idea.

The optical sidebands for PDH locking are generated by phase-
modulating the light sent onto the cavity. If the laser is not resonant
with the cavity, the phase-modulation of the incoming beam is par-
tially converted into an amplitude modulation of the reflected beam.
Now, crucially, the magnitude and phase of the resulting amplitude amplitude modulation

dependent on detuningmodulation depend on the magnitude and sign of the detuning, re-
spectively. This allows us to generate an error signal in the following
way. We measure the the amplitude modulation of the reflected beam
on a photodetector and determine its phase and magnitude by mix-
ing the photodetector output with the modulation signal which gen-
erated the sidebands. After low-pass filtering, this yields a suitable
error signal for stabilizing the detuning between laser and cavity.

In our setup, the phase-modulation is achieved using a resonant
EOM at 20 MHz. This yields strong sidebands which contain up to
50 % of the optical power. After reflection at the optomechanical cav- implementation of the

PDH lockity, a small part (on the order of a µW) of the light is detected on
a fast photodiode (ETX500) mounted directly on a FEMTO DHPCA
current amplifier. The amplified detector output is then mixed with
the 20 MHz-signal driving the EOM. The low-frequency component
of the resulting signal is our PDH error signal: Its magnitude and sign
depend on the detuning between carrier light and cavity resonance.
Note that we also use the PDH-signal to infer the cavity linewidth:
We scan the laser across the cavity resonance, record the PDH-signal
and fit it to the expected error signal (with the cavity linewidth as the
main free parameter).

3.3.3 Homodyne locks

To measure the desired quadrature in homodyne detection, we need
to stabilize the relative phase ∆φ of signal and LO. We achieve this by
feedback to a mirror mounted on a PZT in the LO path. Depending
on the sign of the feedback, this mirror either shortens or lengthens
the optical path of the LO and, thereby, changes ∆φ . The error signal
used for this feedback loop depends on the quadrature we want to
measure.

For the phase quadrature measurement, we can simply use the
difference IDC

− of the DC outputs of the photodetectors as the error
signal. If ∆φ ' 90° (corresponding to a measurement of the phase phase quadrature

quadrature), the DC optical power is the same on both detectors,
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hence IDC
− = 0. If ∆φ fluctuates away from 90°, the DC optical pow-

ers on the two photodetectors become different such that IDC
− 6= 0.

Crucially, the sign of IDC
− depends on the sign of the phase fluctua-

tion which allows us to stabilize IDC
− to zero and thereby stabilize ∆φ

to 90°. For subtracting the DC voltages from the two detectors, we
use an active analogue add/subtract circuit as described in [Böh07,
section 2.3.3].

For the amplitude quadrature measurement, on the other hand, we
need to stabilize ∆φ to 0°. But for ∆φ = 0°, the interference of signalamplitude quadrature

and LO is perfectly constructive on one detector and perfectly de-
structive on the other. Hence, ∆φ = 0° corresponds to an extremum
of IDC

− . But we cannot lock to an extremum of the error signal: As-
sume ∆φ fluctuates to +1° or −1°. In both cases, the error signal IDC

−
is the same. Hence, we do not know whether to apply positive or
negative feedback and, therefore, cannot use IDC

− as the error signal.
Instead, we obtain an error signal using the PDH-technique. The

signal beam already carries a 20 MHz phase modulation (for the PDHPDH lock

lock of the laser to the OM-cavity). The corresponding 20 MHz side-
bands are far outside the linewidth of the OM-cavity and are there-
fore directly reflected at the input coupler mirror. These 20 MHz side-
bands interfere with the carrier of the LO beam on the homodyne
photo detectors. This can be used to stabilize ∆φ to 0°, in complete
analogy to the stabilization of the laser to the OM-cavity: If ∆φ fluc-
tuates away from 0°, the interference between the 20 MHz sidebands
and the LO beam yields an amplitude modulation, whose phase and
amplitude depend on ∆φ . By mixing this amplitude modulation with
the 20 MHz modulation signal used to produce the PDH sidebands,
we obtain an error signal which, for small fluctuations of ∆φ around
0°, is proportional to ∆φ and can therefore be used for stabilizing to
the amplitude quadrature.

3.4 state estimation setup

In this section, I describe the specifics of the experimental setup used
for the state estimation experiment. In Section 3.4.1, I explain how—in
addition to a resonant laser beam—we incorporate a second, red-
detuned beam, for which strong coupling can be achieved. I describe
the mechanical device used for the state estimation experiment, in
Section 3.4.2, and the optomechanical cavity in Section 3.4.3. The ex-
perimental setup is also described in some detail in the supplemental
material of [Wie+15]. A quick overview of all relevant experimental
parameters is provided in Table 3.2 at the end of this section.
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3.4.1 Detuned beam

State estimation using a Kalman filter is universal in the sense that it
is not limited to specific optomechanical parameter regimes (e.g. adi-
abatic or weak coupling), as long as the interaction is approximately
linear (see Chapter 4). To demonstrate this versatility, we applied the state estimation for weak

and strong couplingKalman filter to measurements in both the weak and strong coupling
regime [Wie+15].

In the state estimation experiment, we use a resonant readout beam
—a common feature of optomechanical experiments. The optical pow-
er of the resonant beam cannot be increased enough, however, to
reach strong coupling without making the experiment unstable. To detuned beam with

tunable couplingachieve strong coupling, we therefore add a second laser beam which
is red-detuned by approximately the fundamental mechanical fre-
quency ωm ' 2π× 1.278 MHz. The optical power in this red-detuned
beam can be varied from 20 µW to 1.4 mW, corresponding to cou-
pling strengths in between 0.2 κ and 1.68 κ, without making the setup
unstable.

We create the detuned beam as a sideband to the resonant beam us-
ing a fiber EOM and optical filtering, as explained in Figure 3.10. The generation of the

detuned beamfrequency difference of detuned and resonant beam is given by the
modulation frequency of the fiber EOM. Hence, if the resonant beam
is locked to the cavity resonance, the detuned beam also has a fixed
detuning to the cavity resonance. At the same time, the detuning can
be changed easily by changing the modulation frequency of the fiber
EOM.

The full two-beam setup is sketched in Figure 3.11 (a). Note that two-beam setup

the detuned beam is in the same spatial mode as the resonant beam
but orthogonally polarized. After reflection at the optomechanical
cavity, both beams are separated using polarization optics and sent
to two different homodyne detection setups. A small fraction of the
reflected resonant light is split off to generate an error signal for the
PDH lock (see Section 3.3.2).

Note that, in practice, orthogonal polarizations cannot be separated
perfectly using polarization optics. Hence, a small fraction of the re-
flected detuned beam enters the homodyne detection and PDH lock
detector of the resonant beam. This contribution from the detuned
beam would disturb both the cavity lock as well as the homodyne
detection of the resonant beam, if the two beams were only separated
by ωm. To avoid this, the detuning between detuned and resonant
beam is set not to ωm, but to ωm plus one FSR of the optomechanical
cavity (roughly 2π × 15 GHz). Because of this large frequency differ-
ence, unwanted interference effects between the two beams occur at
frequencies which are not resolved by our detectors.
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resonant
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Figure 3.10. Laser beams used for the state estimation experiment. The
1064 nm-light is split into two beams. The resonant beam (blue) is
sent through two free-space EOMs: The first (EOM 1) is modulated
at 1.45 MHz to provide a calibration tone for the measurements; the
second (EOM 2) is resonantly modulated at 20 MHz to create strong
sidebands for the PDH-lock of the laser to the optomechanical cav-
ity. The other part of the laser light is sent to a fiber EOM (EOM 3)
which is strongly modulated at around 15 GHz. The detuned beam
(red) is created there as one of several sidebands of the resonant beam.
After filtering the emerging beam with a volume holographic grating
(VHG) and a broad-band filter cavity (FC), only the desired sideband
remains. The frequency difference of detuned and resonant beam of
roughly 2π × 15 GHz corresponds to the FSR of the optomechanical
cavity. Hence, the detuned beam is close to the next longitudinal res-
onance of the optomechanical cavity, with the exact detuning being
determined by the modulation frequency.

Figure 3.11. Sketch of the experimental setup for the state estimation
experiment (a) and optical micrograph of the micro-mechanical oscilla-
tor (b). Taken from [Wie+15, Supplemental Material].
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Figure 3.12. Noise power spectrum of the detuned beam showing sev-
eral mechanical resonances of the doubly-clamped SiN bridge. The
broad peak at 1.278 MHz (marked in gray) is caused by the fundamen-
tal mechanical mode. Other noise peaks (marked with ticks on the up-
per horizontal axis) can also be attributed to mechanical modes of the
SiN bridge using finite element modeling (see Figure 3.13). The sharp
peak at 1.45 MHz (to the right of the fundamental mechanical mode) is
a calibration peak. Other unidentified noise peaks are probably due to
laser noise. Taken from [Wie+15, Supplemental Material].

3.4.2 Mechanical device

The mechanical device used in the state estimation experiment is a
doubly-clamped SiN bridge, shown in Figure 3.11 (b). The SiN bridge SiN bridge with

DBR on topcarries a DBR with a diameter of 50 µm made from alternating layers
of Ta2O5 and SiO2. The device was fabricated by Simon Gröblacher.
More details about the fabrication of this mechanical oscillator can be
found in [Grö10, sec. 5.2].

Figure 3.12 shows a NPS of the detuned beam. Several peaks can be
attributed to mechanical modes: The fundamental mechanical mode mechanical mode structure

at 1.278 MHz and higher mechanical modes at 2.325 MHz, 3.050 MHz,
4.237 MHz, 5.604 MHz, and 7.240 MHz. The fundamental mechani-
cal mode couples most strongly to the intra-cavity mode and, con-
sequently, contributes by far the largest band power to the NPS in
Figure 3.12. But some higher mechanical modes between 2 MHz and
8 MHz also interact strongly enough to be relevant for Kalman filter-
ing. In total, eight mechanical modes were taken into account in the
Kalman filter.

To attribute peaks in the NPS to mechanical modes, we use finite
element (FEM) simulation of the mechanical device and match simu- finite element simulation

lated eigen-frequencies of the device with observed peaks in the op-
tical NPS. FEM results for some mechanical modes are visualized in
Figure 3.13. Note that the FEM results can also be used to predict the
coupling of the mechanical modes to the optical intracavity mode. To
do this, we need to compute the effective mass of the mode according
to (2.69). To this end, we average the displacement caused by a given
mechanical mode over the region probed by the optical intra-cavity
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(a) (b)

(c) (d)

Figure 3.13. Mechanical displacement of the first four mechanical
modes of the doubly-clamped SiN-bridge calculated by FEM. Due to
two-fold mirror symmetry of these modes only a quarter of the device
is shown. The full structure is obtained by mirroring with respect to
the two edges facing the viewer. Color maps to absolute displacement
with red corresponding to large (absolute) displacement and blue to
small. The simulation predicts an eigen-frequency of 1.278 MHz for
the fundamental mechanical mode (a) and of 2.31 MHz, 3.08 MHz, and
4.31 MHz for the next three higher modes (b) - (d). Taken from [Wie+15,
Supplemental Material].

mode (a small part of the DBR surface). This average displacement is
small for all but the fundamental mechanical mode (as illustrated by
Figure 3.13), which explains why it shows a much larger optomechan-
ical coupling than the other mechanical modes, and therefore yields
the dominating contribution (measured in band power) to the NPS in
Figure 3.12.

Note that the fundamental mechanical mode of this device has a
very low quality factor of Q ' 4800 (at room temperature). Hence,
this device is unsuitable for demonstrating conditional cooling to the
ground state or any type of quantum effect, let alone quantum entan-
glement. For the restricted purpose of demonstrating optimal state
estimation, however, the low quality factor is not a problem.

A big advantage of this device for the purpose of demonstrating
optimal state estimation is its relatively small number of significantly
interacting mechanical modes. This makes it comparatively easy to
create a state space model suitable for Kalman filtering. In contrast,
constructing a suitable state space model for a membrane-type oscil-
lator (as used for the entanglement experiment) would be a much
bigger challenge since, in this case, a huge number of mechanical
modes (at least 50) interact significantly and would have to be taken
into account.
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3.4.3 Optomechanical cavity

The optomechanical cavity consists of the micro-mirror (sitting on
top of the SiN-bridge) as the end-mirror and a macroscopic mirror
as the input coupler. The micro-mirror is a flat and highly reflective cavity parameters

DBR with a power transmission on the order of a few ppm. The
macroscopic input coupler has a radius of curvature of 10 mm and a
power transmission of roughly 300 ppm. Total internal power losses
except input coupler are below 70 ppm. The cavity is 1 cm long and
has a free spectral range of νFSR ' 15 GHz. The HWHM-linewidth is
κ ' 2π × 436 kHz ' 0.34× ωm, corresponding to a finesse of F '
17200. The cavity is strongly over-coupled with κ1 ' 0.278×ωm and
κ2 ' 0.064 × ωm. It is placed in vacuum (p ' 10−5 mbar) inside
a dilution refrigerator, but operated (for the experiment reported in
[Wie+15]) at room temperature.

The SiN-bridge sits on a Si chip. The chip is mounted on a cop-
per holder which can be moved independently along the cavity axis positioning of the

mechanical oscillatorand laterally using three piezo-based positioners (ANPz101 from at-
tocube). Positioning of the SiN-bridge along the cavity axis allows to
fine-tune the cavity length and thereby to change the waist of the cav-
ity mode at the position of the SiN-bridge. This is important because
we need the waist to be much smaller (' 10 µm) than the diameter
(50 µm) of the DBR. Otherwise, we would lose a lot of light and could
not achieve strong over-coupling of the cavity. Lateral positioning
of the SiN-bridge ensures that the cavity mode hits the mechanical
device as centrally as possible, resulting in minimal optical losses
and optimal optomechanical coupling to the fundamental mechani-
cal mode.

3.5 entanglement setup

The entanglement experiment (which is discussed in detail from a
theory perspective in Chapter 5) is even simpler than the state esti-
mation experiment, as far as the setup is concerned. There is only a
single, resonant driving beam, which is read out using two separate
homodyne detection setups. The main additional challenge, com-
pared to the state estimation experiment, are the very stringent re-
quirements on optical noise and mechanical decoherence. We reduce reducing optical noise

& mechanical decoherenceoptical noise using a narrow-band filter cavity, as already discussed
in Section 3.1.2. Mechanical decoherence is reduced by operating the
experiment at cryogenic temperatures (which lowers the temperature
of the mechanical bath) and working with mechanical modes with
very high quality factors.

The condition on the mechanical quality factors is indeed rather
demanding. Simulations, such as Figure 5.5b, show that we need ap-
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symbol definition value

ωm mechanical frequency 2π × 1.278 MHz
γm mechanical linewidth (1/4800)×ωm

q0 mechanical ground state position 2.73× 10−16 m
p0 ...and momentum uncertainty 3.87× 10−19 kg m/s
κ cavity HWHM-linew., κ = κ1 + κ2 0.341×ωm

κ1 cavity linew. due to input coupler 0.2775×ωm

κ2 cavity linew. due to other losses 0.0635×ωm

g0,i single-photon coupling 2π × 7.7 Hz
gd coupling of detuned beam 0.2 . . . 1.68× κ

gr coupling of resonant beam 0.2× κ

∆d detuning of detuned beam −ωm

Table 3.2. Values of important parameters in the state estimation ex-
periment. The subscripts i ∈ {d, r} denote the detuned and resonant
laser beam, respectively. The mechanical parameters and optomechani-
cal coupling rates refer to the fundamental mechanical mode. Adapted
from [Wie+15, Supplemental Material].

proximately Q > 5× 106 if we operate in a liquid helium flow cryo-requirements regarding
mechanical quality factor stat (T ' 5 K). For this reason, we use high-stress SiN membranes as

optomechanical devices for the entanglement experiment. Their suit-
ability as OM-systems was demonstrated in [Jay+08; Tho+08; Wil+09]
and they are known to yield sufficiently high quality factors [Ver+06;
VCP08; Sou+09].

As an alternative to SiN membranes, high-stress InGaP membranes
could be used in the future. They have already been shown to be high-
Q mechanical oscillators [Col+14]. In addition, it should be possible
to directly integrate InGaP membranes with semiconductor DBRs,
via microfabrication. This would would remove the need for man-
ual alignment of the membrane (with respect to the end mirror of a
cavity) and allow to fine-tune the optomechanical coupling, which de-
pends sensitively on the distance between membrane and end-mirror
(see Section 2.4.2). It should also increase the stability of the resulting
optomechanical cavity.

The remainder of this section discusses the mechanical and optome-
chanical properties of the SiN membranes (Section 3.5.1) and how we
integrate them into an optomechanical cavity (Section 3.5.2).

3.5.1 High-stress SiN membranes

We work with thin, square, high-stress SiN-membranes which are ei-
ther purchased from Norcada Inc or custom-made by Claus Gärtner
(a PhD student in our group) in the clean room at TU Delft. They
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are created by depositing a thin SiN layer (d ' 50 to 100 nm) on a
comparatively thick (dF ' 200 to 500 µm) Si substrate.24 The sub- 24 Sketch of

SiN membrane
on Si frame
(top view and
cut through center).

d
dFSi

Si
Lx   Ly

strate, which we also refer to as the “frame”, has lateral dimensions
LF ' 5 to 10 mm. By removing a square patch of the Si substrate in
the center, a window is created, which is covered only by the thin
SiN film and can move freely. This freely moving part of the SiN film
is the mechanical oscillator we work with and it will be referred to
simply as “the membrane”. The frame provides the tensile stress for
the membrane and is our handle for fixing the membrane at a desired
position.

The membranes are almost perfectly square with lateral dimen-
sions Lx ' Ly ' 0.5 to 1 mm, much larger than their thickness d '
50 to 100 nm. The geometry of these membranes is therefore extremely
well approximated by a two-dimensional square drum head, whose
mechanical mode structure is well known. The mechanical modes of model of the

mechanical motiona square drum head can be labeled by two numbers m, n ∈ N, the
number of anti-nodes in the two transversal directions.25 The frequen- 25 Mode structure of the

(3, 3)-mode of a square
membrane, defined by
three anti-nodes in both
directions:

cies ωm,n and mode functions um,n(x, y) of the mechanical modes are
given by [see Wil+09, sec 4.2.1]

ωm,n = cπ
√
(n/Lx)2 + (m/Ly)2, (3.9)

um,n(x, y) = sin(nπx/Lx) · sin(mπy/Ly), (3.10)

where c =
√

σ/ρ ' 550 m/s is the speed of sound for the mem-
brane surface, σ ' 1 GPa is the tensile stress of the membrane (as-
sumed isotropic in x and y), and ρ ' 3.44 kg/m3 is the mass density.
um,n(x, y) describes the peak displacement in z-direction of a point
with coordinates (x, y) in the membrane plane due to mode (m, n).
Note that (3.9) applies in the limit of high tensile stress σ, in which the
contribution of flexural rigidity to the potential energy of the mem-
brane can be neglected. In this limit, the frequencies ωm,n depend
only on the tensile stress and the lateral dimensions and not directly
on the thickness.

For a sense of scale, according to (3.9), high-stress membranes of
1 mm× 1 mm lateral dimensions should have a frequency of ω1,1 ' example spectrum

2π × 400 kHz for the fundamental mechanical mode and of ω3,3 '
2π × 1200 kHz for the (3, 3)-mode. Figure 3.14 shows a mechanical
NPS which demonstrates that this simple square drum model fits the
measurements extremely well.

The main reason for using high-stress SiN membranes in optome-
chanical experiments are their potentially ultra-high mechanical qual-
ity factors [Ver+06; VCP08; Sou+09]. Even at room temperature, qual- ultra-high Q-factors

ity factors as large as Q = 5× 107 have been reported [Cha+14]. The
large tensile stress is crucial for reaching very high quality factors:
The quality factors of high-stress membranes have been shown to ex-
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Figure 3.14.Assumed parameters:
membrane side lengths

Lx,y = (1± ε) · 1 mm,
density of Si3N4

ρ = 3.44× 103 kg/m3;
Fitted parameters:

ω1,1 ' 2π × 392 kHz,
tensile stress

σ = 1.06 GPa, deviation
from square form

ε ' 1.4× 10−4.

Measured spectrum for a commercial SiN membrane.
Semitransparent green vertical lines mark the theoretically expected
frequencies of membrane modes (from the square membrane model
(3.9), fitted to the measurement). The fundamental mechanical mode
is at ω1,1 ' 2π × 392 kHz. As expected, all membrane modes are ob-
served in the NPS. The additional broad noise peaks at low frequencies
(between 10 kHz and 300 kHz) are due to laser noise. The many sharp
small peaks at higher frequencies (with peak noise powers three to six
orders of magnitude below typical membrane peaks) are mostly due to
mirror substrate noise.
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ceed those of corresponding unstressed devices by more than two
orders of magnitude [Sou+09].

It is quite difficult to reproduce the highest reported quality factors
within a cavity optomechanics experiment because the quality fac-
tors depend very sensitively on the “clamping”, by which we mean, “clamping loss”

quite generally, the way the Si frame (which holds the membrane) is
fixed to the optomechanical cavity; a discussion of this topic and a
nice compilation of measurements of Q for different clamping meth-
ods are given in [Wil12, sec. 4.7]. The highest Q factors are usually
recorded without any kind of rigid clamping, by letting the mem-
brane simply rest on a surface, pushed down by its own gravity.
In cavity optomechanical experiments, however, we need stable lat-
eral and angular alignment of the membrane with respect to a cavity,
which is hard to achieve without rigid clamping. Since the best way
to position and clamp a membrane also depends on the cavity geom-
etry, I will return to this topic when discussing the optomechanical
cavity in Section 3.5.2. The reason for the large sensitivity of the
mechanical quality factors to clamping is that the quality factors are
usually limited by coupling of membrane modes to the surround-
ing support structure (the Si frame) via acoustic radiation [Wil+11;
Cha+14]. The quality factor depends therefore very sensitively on
the mechanical mode structure of the frame [Jöc+11], but the frame
modes themselves can easily be disturbed—shifted in frequency as
well as broadened—by clamping.

Figure 3.15 shows results of Q-measurements for a commercial
0.5× 0.5 mm SiN membrane mounted inside the MIM-cavity, both at
room temperature and low temperature. Again, the measured mode Q measurements

frequencies agree extremely well with the simple formula (3.9).26 The 26 Note that this
membrane had a
comparatively low tensile
stress σ = 0.78 GPa,
resulting in a fundamental
frequency of only around
680 kHz.

measured frequencies decrease by about 1 % by cooling from room
temperature to 5 K. Importantly, we observe an increase in Q factors

increased Q at low
temperatures

for the cooled sample by, on average, a factor 5. Increases in quality
factor by cooling to liquid helium temperatures have been observed
by many groups [see e.g. Sou+09].

For all membrane modes, the modal mass (2.41) is given by a fourth
of the full membrane mass. For a 1 mm× 1 mm-membrane with

modal massthickness d = 50 nm and mass density ρ ' 3.44 kg/m3, the modal
mass is m ' 43 ng, independent of the mechanical mode. This yields
a zero-point position uncertainty of q0 ' 0.7 fm for the 11-mode, and√

ω11/ωmn × 0.7 fm for a higher mechanical mode. If the laser is fo-
cused tightly onto an anti-node of the mechanical mode, the effective
mass (2.69) of the membrane is roughly given by its modal mass. In
this case, the coupling is proportional to 1/

√
ωmn, hence depends

only on the frequency ωmn and not (directly) on the mode indices
m, n.
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Figure 3.15.Assumed parameters:
Lx,y = (1± ε) · 0.5 mm
ρ = 3.44× 103 kg/m3;

Extract. parameters LT:
ω1,1 ' 2π × 675 kHz,

σ = 0.78 GPa, dev. from
square form ε ' 4 h;

Extract. parameters RT:
ω1,1 ' 2π × 682 kHz,

σ = 0.80 GPa, ε ' 3 h;

Measured Q and f at room temperature and low tem-
perature (red and blue dots, respectively) for a commercial SiN mem-
brane, mounted inside the MIM-cavity. The light red and blue vertical
lines mark expected membrane frequencies according to (3.9) (param-
eters σ and ε are extracted from measurements, see margin) which fit
the measurements excellently. For each data point, several mechanical
ringdowns were recorded using optical readout at 1550 nm (for which
the MIM-cavity is transparent, thus avoiding optical damping). Each
mode was individually excited using a PZT mounted on the cavity cor-
pus. The standard deviation across all ringdowns for a given mode is
on the order of a %.
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Si frame
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Figure 3.16. CAD drawing of the optomechanical cavity. (a) Cut
through the center (along the axis) of the quasi-monolithic cavity body,
consisting of two blocks of copper (C1 and C2) screwed tightly together.
C1 holds the curved input coupler mirror, C2 holds the flat back mirror
on which the membrane is fixed. (b) Zoom-in on the membrane shows
how the membrane (green) is positioned on the back mirror: It rests on
a Si frame (dark gray), rotated by 45 ° with respect to the membrane,
and itself resting directly on the flat back mirror. Not shown are Teflon
clamps which press the membrane down against the Si frame and back
mirror.

3.5.2 Optomechanical cavity

To use high stress SiN membranes in optomechanical experiments,
we have to integrate them into high finesse optomechanical cavities
such that the membrane’s mechanical motion couples significantly to
an optical cavity mode (as discussed in Section 2.4.2). But can we in-
sert a membrane into a high finesse cavity without introducing strong
optical losses and ruining the finesse? Optical losses could result high finesse MIM cavity

from absorption in the membrane or from scattering at the membrane
surface (into other cavity modes or out of the cavity). Fortunately, the low optical absorption

optical absorption of high stress SiN membranes is extremely low in
the near infrared. [San+10] found . 1.5× 10−6 for the imaginary part
of the index of refraction at 1064 nm. Scatter into other cavity modes,
on the other hand, could result from either surface roughness (not
a problem for the membranes) or from a non-flat optical wave front
at the position of the membrane. We avoid the latter by placing the
membrane well within a Rayleigh range from the focus of the cavity
mode. The third, and most pernicious, source of scattering losses is
tilt, i.e. a non-zero angle between the membrane surface and the wave
front of the cavity mode.

Tilt was a huge problems in the earliest cavity designs. It man-
ifested in increased optical losses and a hybridization of different
TEM-modes of the cavity; the latter lead to poor mode matching be-
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tween laser and cavity. To avoid tilt, most groups align the membraneavoiding tilt

tilt actively using nano-positioners. We decided against such an ap-
proach and finally found a straightforward cavity design, shown in
Figure 3.16, in which very good tilt alignment is possible without any
active positioning. The idea is to use a flat back mirror (such that
the cavity mode is perpendicular to the back mirror) and then lay the
membrane directly on the back mirror (such that its surface is parallel
to the back mirror and thereby perpendicular to the cavity axis). Themembrane positioning

only problem with that approach is that some air will be trapped in
between the membrane and the mirror surface. When the cavity is
evacuated, a pressure difference builds up which destroys the mem-
brane. We therefore put the membrane on an auxiliary square Si
frame (purchased from Norcada Inc.) of 10 mm side length and some
100 µm thickness and with a square window of 5 mm side length in
the center. By rotating the membrane by 45° with respect to this win-
dow, we introduce air gaps through which the volume between the
membrane surface and the mirror surface can be evacuated (see Fig-
ure 3.16 (b)). To keep the membrane in place, we clamp it down softly
at the edges of the frame using clamps made from Teflon. In this de-
sign, tilt could still arise due to thickness variations of the auxiliary
Si frame and of the Si frame of the membrane itself. But both of these
are defined by microfabrication and therefore sufficiently smooth.

We also need good lateral alignment of the cavity mode with re-lateral alignment

spect to the membrane, to avoid optical losses (from clamping of
the cavity beam at the edges of the membrane) and to optimize the
optomechanical coupling to the fundamental mechanical mode. We
achieve lateral alignment as follows. We move the copper block C1

(which holds the input coupler) laterally with respect to C2 (which
holds cavity and membrane) while they are only softly pressed to-
gether. We monitor the alignment on a CCD camera in transmis-
sion (behind the back mirror).27 This camera detects both the small27 CCD image of

membrane and cavity
mode (bright spot).

amount of infrared intracavity light leaking through the back mirror
as well as a shadow of the membrane (the membrane is illuminated
with white visible light through the input coupler). When we are sat-
isfied with the relative position of membrane and cavity mode, we
screw C1 tight against C2 which completely fixes the geometry of the
cavity.

The biggest drawback of the current cavity design is that we can-
not align the membrane longitudinally, i.e. we cannot fine-tune theno longitudinal alignment

distance z between membrane and back mirror. Fine-tuning of z with
a precision of some nanometers would allow us to fine-tune the op-
tomechanical coupling (as discussed in Section 2.4.2) and, therefore,
to achieve the same coupling independent of temperature and from
one cool-down to the next.
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The decision for a manually pre-aligned quasi-monolithic cavity
design without in-situ positioning was taken for stability reasons and quasi-monolithic

to obtain a very compact design which allows us to fit the cavity
into a small liquid Helium flow cryostat. The flow cryostat has the
big advantage (compared to the large dilution refrigerator we were
previously using) of allowing fast cool-downs and quick turn-around
times. Regarding stability, we wanted to improve upon perceived
flaws of an earlier cavity design (used for the state estimation ex-
periment). This earlier design included active positioning and was
therefore much more bulky, less monolithic and less stable in many
respects: It required lateral and longitudinal realignment after cool-
ing down and was much more susceptible to acoustic noise. In the
current cavity, on the other hand, lateral and tilt alignment of the
membrane are usually very well preserved when cooling down. Also
the frequency stability of this cavity at acoustic frequencies is much
better than previous designs. In this sense, the current cavity design
is a success.

Apart from stability, the main design goal for the cavity was to

achieve strong cooperativity C = g2/ (κγmn̄)
!
> 1, which is needed for high cooperativity

the entanglement experiment. To reduce the thermal phonon number
n̄, the membrane needs to be at low temperatures which requires a
good thermalization of the cavity corpus. To this end, the cavity
corpus is built from oxygen-free high thermal conductivity (OFHC)
copper. γm can only be decreased by choosing high quality oscilla-
tors and taking good care to only introduce minimal clamping. This
leaves us with the requirement of large g2/κ. We have

g2

κ
∝
(

κ1

κ2 + ∆2 Ping2
0

)
/κ

κ1'κ
∝

g2
0

κ2 . (3.11)

Both κ and g0 are proportional to 1/L, hence the cooperativity is in-
dependent of the cavity length. But simulations of the entanglement
experiment suggest that, at a given cooperativity, our protocol works
better for decreasing sideband resolution ωm/κ. We therefore de-
cided to increase κ by shortening the optomechanical cavity to 5.5 mm. short cavity

The cavity geometry is thus very similar to the one used in [Pur+12].
Note that, since we cannot fine-tune the cavity length, we must be
able to tune the laser into resonance. Therefore, the tuning range of
our laser of 30 GHz is the upper limit on the free spectral range. This
translates into a minimum cavity length of 5 mm.

For a given cavity length L, κ can of course be decreased by choos-
ing higher mirror reflectivities. This is limited because we want to one-sided cavity

achieve strong over-coupling such that most of the light is reflected
at the input coupler. We therefore choose a much higher transmis-
sion of ' 950 ppm for the input coupler mirror, limiting the finesse
to roughly 6600 (though we measured only ' 6250; see Table 3.3).
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Finally, the single-photon coupling g0 can, for a given cavity length
L, be increased a bit by moving the membrane as close to one of the
mirrors as possible [Wil12, sec. 3.3.1]. This was another motivationmembrane-at-the-end

for mounting the membrane more or less directly on the back mirror.
Note again that the optomechanical coupling depends on the exact
distance z of membrane and mirror (with a rough periodicity of λ/2).
Since we cannot fine-tune z, we observe different couplings on each
cool-down. The same is true for the finesse [Jay+08], [Wil12, sec. 3.3.2].
As an example, one set of optical and optomechanical parameters
measured at low temperatures (5 K) is summarized in Table 3.3.

symbol definition value

L cavity length 5.5 mm
νFSR free spectral range 27 GHz
T1 power transmission (nominal) of mirrors 950 ppm
T2 (1: input coupler, 2: back mirror) . 1 ppm
R1 (R2) radius of curvature of mirrors 10 mm (∞)

w1 (w2) waist of cavity mode at the mirrors 61 µm (41 µm)

Fempty finesse of empty cavity (measured) 6250
F finesse of cavity with membrane (meas.) 5300
κ cavity HWHM-linew. (incl. membrane) 2π × 2.6 MHz
d distance membrane to back mirror 0.5 mm

g0
single-photon coupling of

2π × 40 Hz
fundamental mode (measured at 5 K)

Table 3.3. Optical and optomechanical parameters of the membrane
cavity. Note that, the position of the membrane in axial direction (i.e.
its distance from the back mirror) fluctuates from cool-down to cool-
down. Therefore, also the finesse F of the optomechanical cavity and
the single-photon coupling g0 fluctuate from cool-down to cool-down;
the values provided in the table are example values for one particular
measurement. The sketch in the margin illustrates the naming conven-
tions for the different length scales at play and the mirrors.
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S TAT E E S T I M AT I O N U S I N G K A L M A N F I LT E R I N G

4.1 introduction

State estimation deals with the question: “If we know how two sys-
tems A and B interact and we observe system B, what can we say
about the state of A?” This problem is very much ubiquitous in ex- ubiquity of state

estimationperimental physics where, more often than not, we are interested in
physical quantities which are not directly observable.

Consider photodetection: System A is the light field, system B is trivial example:
photodetectiona photodetector. Light field and photodetector interact and we mea-

sure the photo-voltage—a property of the photodetector. Knowing
the photo-voltage, what can we say about the state of the light field?
What can we say about its intensity?

Photodetection can be framed as an instance of state estimation, but
it is admittedly rather trivial: The measured observable (photovolt-
age) is simply proportional to the quantity of interest (light intensity)
plus some added noise (electronic dark noise of the detector circuit,
say). In this case, we can easily pretend to have directly measured
light intensity. To add sophistication, we might add error bars to in-
dicate that the measured photovoltage statistically fluctuates around
the actual light intensity. This example is so simple that we may not
even realize that we are, in fact, doing state estimation.

Often, however, the relationship between the quantity of interest
and the measured observable is not that simple and state estimation
becomes a real challenge. In cavity optomechanics, for example, we non-trivial example:

optomechanicsare interested in the position q of the mechanical element inside the
cavity. Unfortunately, we generally cannot measure q directly. What
we can measure is the phase y of the laser light reflected from the
cavity, which in turn is influenced by q. But exactly how q influences
y depends on experimental parameters such as laser detuning and
intensity, mechanical properties etc. Furthermore, the transfer func-
tion from q to y is, in general, strongly frequency-dependent. Hence,
we clearly cannot pretend anymore that y is proportional to q. The
question is therefore: How do we get a good estimate of the mechan-
ical position (and momentum) from the measured properties of the
light? And how do we know how reliable (how close to the truth) our
estimate is?

This is the problem of optimal state estimation, which can be formu-
lated in full generality as follows: optimal state estimation

63
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1. What is the optimal estimate of the full state of a system given
observations on only a part of the system?

2. And how close to the true value is our optimal estimate? I.e.,
what is the expected estimation error?

We will answer these questions under the assumption that we have a
perfect model of the system. This is, of course, never exactly true butassumptions:

perfect system model... is close enough to the truth for a physical system as well-studied as an
optomechanical cavity. Furthermore, a single observation is usually
not enough to learn much about the state of the system. Therefore,...& repeated observations

we consider repeated measurements in time and are concerned with
the optimal estimate of the full system state given a set of, in general,
multiple past observations.

The optimal estimate together with the expected estimation error
is encoded in the conditional state, which is the conditional probabilityconditional state

distribution over all possible system states. This conditional probabil-
ity distribution describes how likely you judge a certain system state
to be given the history of observations. This is in contrast with the
unconditional state which describes the probability of a given system
state without taking any measurements into account. Specifying the
full conditional probability is the most general and most informative
way of expressing a state estimate, but often it is preferable to con-
dense this information further by defining:

expected estimation error Expected deviation between the op-
timal estimate of the system state and its true value, where the
expectation value is taken with respect to the conditional prob-
ability distribution.

optimal estimate System state which minimizes the expected es-
timation error. This might (but need not) be the the same as the
expectation value of the conditional probability distribution.

Hence, state estimation is an optimization problem: The expectedstate estimation as an
optimization problem estimation error is the so-called cost function, which we want to min-

imize. Note that the expected estimation error will here be defined
as the root mean square (RMS) deviation from the true state. This is
a common choice but other cost functions can be just as legitimate,
depending on what we want to do with the estimate (i.e. which types
of errors we most desperately want to avoid). Changing the cost func-
tion means changing the definition of “estimation error” and will, in
general, lead to a different optimal estimate.

4.1.1 State estimation for Gaussian systems

To calculate the optimal estimate and the expected estimation error,
we generally need to know the full conditional probability distribu-
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tion after each measurement. But the conditional probability distribu- computationally expensive

tion is generally described by an infinite number of parameters. This
is one reason why optimal state estimation is, in general, computa-
tionally expensive or even impossible in practice.

Fortunately, our experimental system is Gaussian. This means: Gaussian systems

• The unconditional state is given by a Gaussian distribution.

• The system dynamics is linear.

• The driving noise processes are described by Gaussians random
processes.

These three properties imply that the conditional state of a Gaussian
system is always given by a Gaussian distribution—at least as long conditional state is

Gaussianas only linear measurements are considered, which is the case in all
our experiments. This drastically simplifies optimal state estimation
because it implies that the conditional state is fully described by the
first and second moments (vector of means and covariance matrix) of
the conditional probability distribution; hence, by N + N(N + 1)/2
real numbers if the system is described by N state variables.

It might therefore be not too surprising that, for Gaussian systems,
a practical solution to the problem of state estimation is known, called Kalman filter

the Kalman filter. As explained in Section 4.2, the Kalman filter can
be understood as recursive Bayesian updating applied to Gaussian
systems or as a time-dependent version of linear regression.

What are the advantages of the Kalman filter?

• It is provably optimal for Gaussian systems. Hence, no other advantages of
Kalman filteringsystematic procedure for estimating the system state fares better

in a statistical sense (yields a smaller RMS estimation error).

• In addition to an optimal estimate for the current system state
it also yields an estimate of the estimation error. Hence, for
Gaussian systems, it yields the complete conditional state.

• The Kalman filter is completely recursive: It produces its state
estimate based only on the previous state estimate and the cur-
rent measurement. Hence, the memory requirements are low
and it is, in principle, amenable to real-time implementation.

• The Kalman filter can be “debugged” systematically (as explained
in more detail in Section 4.4.1) by analyzing the so-called inno-
vation sequence, which is the difference between expected and
actually observed measurement values.

• This “debugging procedure” can be used as a tool for system
identification: If the innovation sequence behaves (statistically)
as expected, we can be confident that we have found a reason-
able system model.
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What are the main challenges we have to overcome when we imple-
ment a Kalman filter?

• The Kalman filter requires an accurate state space model for thechallenges of
Kalman filtering experimental system. Identifying a suitable model is, generally,

not trivial! Section 4.3 explains how to construct a suitable state
space model for a cavity optomechanical experiment.

• The Kalman filter assumes that the system is driven by white
noise. But in practice, the driving noise often has a strong
frequency-dependence. In this case, we need to find an equiva-
lent model which is driven by white noise only. This is achieved
by adding a model for the driving noise process to the actual
state space model, as explained in Section 4.3.2. Identifying a
suitable model for the driving noise can, again, be non-trivial.

In [Wie+15], we demonstrated that these challenges can be overcome
and that Kalman filtering can be applied to real-world cavity optome-
chanical systems—even in the presence of colored laser noise and
multiple mechanical modes, both of which are typical features of cur-
rent cavity optomechanical setups. While Kalman filtering itself has
been used successfully for a long time in many science and engineer-
ing disciplines, [Wie+15] was the first application of Kalman filtering
to cavity optomechanical systems, thereby opening a door to a wide
range of potential applications: From quantum state reconstruction
over conditional cooling and real-time optimal control to improved
mechanical force sensing. This chapter of the thesis is devoted to
explaining these results in some detail.

4.1.2 Outline

I start, in Section 4.2, with a general introduction to Kalman filtering
from a Bayesian point of view. In Section 4.3, I explain the state space
model for our experimental system, which is the basis of the Kalman
filter. Section 4.3.2 focuses specifically on how to incorporate colored
laser noise into the state space model. Section 4.4 presents the results
of applying a Kalman filter to our measurement data. We showed
that our state space model is accurate by analyzing the innovation se-
quence (Section 4.4.1). We demonstrated that the Kalman filter is ap-
plicable in very different optomechanical parameter regimes by vary-
ing the optomechanical coupling (Section 4.4.2). Finally, we demon-
strated conditional cooling of the mechanical subsystem by analyzing
the so-called estimation error covariance (Section 4.4.3). In Section 4.5,
I briefly contrast the Kalman filter with earlier approaches to optome-
chanical state-estimation and provide an outlook regarding potential
applications.
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4.2 recursive bayesian estimation & kalman filter

Note that some notation and some straightforward calculation rules
used throughout this section are collected in Section A.4.

4.2.1 Bayesian estimation

Consider a measurement of a variable z which depends linearly on
another variable x (the system state) but with some added measure-
ment noise v linear measurement

with noisez = Cx + v, v ∼ N (v; 0, V) , (4.1)

where v is white and distributed according to a Gaussian with zero
mean and variance V (denoted by N (v; 0, V)). For example: x = light
intensity at detector, v = amplifier dark noise, z = photovoltage.

Our goal is to arrive at an optimal estimate of x, based on the mea-
surement outcome z. This is the problem of state estimation. Because state estimation

of the measurement noise v we clearly cannot know x exactly. Hence,
the question really is: Given the measurement result z, which probabilities
should we assign to different possible values of x?

In addition to the measurement result z, we generally also have
some prior information about x, usually from earlier measurements.
In general, these two pieces of information—current measurement
and prior information—will point to different values of x. Hence, we weighing information

need to reconcile two conflicting pieces of information, by attaching
relative weights to them. How to best do this depends on:

• The quality of the prior knowledge: The more we trust it, the
less weight we attach to a conflicting measurement result.

• The quality of our measurement: The more reliable our mea-
surement is, the more weight we will attach to it.

These intuitions can be made precise using Bayesian concepts: Bayesian terminology

prior ρ(−)(x): probability28 we assign to x before the measurement. 28 Note that we are
actually dealing with
probability densities, but
refer to them simply as
“probabilities” for the sake
of brevity.

posterior ρ(+)(x)=ρ(x|z): probability we assign to x conditional on
a measurement outcome z.

likelihood ρ(z|x): conditional probability to observe the actual
measurement outcome z as a function of the system state x.

Note that the prior and posterior are simply the conditional states for
x before and after a measurement, respectively.

Using these concepts, Bayes’ theorem provides a comprehensive so-
lution to the problem of state estimation: Bayes’ theorem

ρ(+)(x|z) = ρ(z|x)
ρ(z)

ρ(−)(x) ∝ ρ(z|x) · ρ(−)(x). (4.2)
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(4.2) tells us how to update the conditional state when we obtain
a measurement outcome z: The posterior ρ(+) (the new conditional
state) is proportional to the prior ρ(−) (the old conditional state) times
the likelihood ρ(z|x) for obtaining result z.

To apply this to our experiment, we need to evaluate (4.2) for a mul-
tidimensional linear measurement (with Gaussian errors) on a multi-application to

our experiment dimensional Gaussian system.29 In addition, since in our experiment
29 “Multidimensional”

means that system state
and measurements are

both described by vectors.

the system state x is not constant but evolves in time between mea-
surements, we need to amend (4.2) by another equation specifying
how the conditional state changes in between measurements.

The Kalman filter is nothing more than this: A rule for updat-
ing conditional probabilities recursively for Gaussian systems subjectKalman filter

to linear measurements—alternating between measurement-induced up-
dates according to Bayes’ theorem (4.2) and updates due to the regular
time-evolution of the system. In what follows, I will slowly build up
towards the full Kalman filter equations by a sequence of generaliza-
tions starting from recursive estimation of a constant state.

4.2.2 Bayesian estimation for Gaussian probabilities

Consider repeated measurements of a variable z, linearly related to
the system state x, but subject to measurement noise v:

zi = Cx + vi, i = 1, . . . , N. (4.3)

zi and vi denote the measurement outcome and strength of the noise
for the i-th measurement, respectively. v is assumed white and Gaus-
sian with zero mean and (time-independent) variance V:

E
[
vivj

]
= V · δij, vi ∼ N (vi; 0, V) . (4.4)

Assume the prior probability is Gaussian, i.e.prior

ρ(−)(x) = N
(
x; x̂(−), P(−)) , (4.5)

where x̂(−) and P(−) are the expectation value and variance of ρ(−)(x).
This means that x̂(−) and P(−) can be interpreted as our “prior best
guess” of x and our “prior uncertainty” about x, respectively.

(4.3) implies the following likelihood function for measuring zi:likelihood

ρ (zi|x) = N (zi; Cx, V) ∝ N
(
x; zi/C, V/C2) . (4.6)

Using Bayes’ theorem (4.2) together with the simple rules (A.1),
(A.2), and (A.3), we see that the posterior probability ρ(+) after a singleposterior



4.2 recursive bayesian estimation & kalman filter 69

measurement with outcome z is also Gaussian:

ρ(+)(x|z) = ρ(z|x)
ρ(z)

ρ(−)(x) = N
(
x; x̂(+), P(+)

)
, (4.7)

where the posterior expectation value and variance x̂(+) and P(+) (our
“new best guess for x” and our “new uncertainty about x”) are: new optimal estimate

x̂(+) = P(+)
(

x̂(−)/P(−) + (z/C) /
(
V/C2)) , (4.8)

1/P(+) = 1/P(−) + C2/V. (4.9)

Note that, for a Gaussian conditional probability ρ(x) = N (x; x̂, P),
x̂ is indeed the best estimate for x because, for any other estimate x̂′, interpretation of

x̂ as “best guess”...the expected mean square estimation error (with respect to ρ) is larger

E
[(

x− x̂′
)2
]
≡

+∞∫
−∞

(
x− x̂′

)2N (x; x̂, P) dx ≥ E
[
(x− x̂)2

]
, (4.10)

and P is indeed the mean square estimation error for the estimate x̂: ...and P as “estimation
uncertainty”

E
[
(x− x̂)2

]
= P. (4.11)

4.2.2.1 Repeated measurements and relation to linear regression

Suppose the system state x does not change with time (as implicitly
expressed in (4.3)). Then we can simply measure repeatedly to obtain
a more accurate state estimate. Using (4.8) and (4.9) recursively we
get recursive Bayesian

estimation

x̂i = Pi
(
x̂i−1/Pi−1 + (zi/C) /

(
V/C2)) , (4.12)

1/Pi = 1/Pi−1 + C2/V, (4.13)

where zi is the measurement outcome for the i-th measurement and
where x̂i and Pi define the posterior after the i-th measurement (which
is the same as the prior before the measurement i + 1).

Assume now that we have no prior knowledge about x. We can prior knowledge

model this by letting P0 → ∞ in (4.12) and (4.13) (the value of x̂0 does
not matter in this case). This yields:

x̂N = (1/N)×
N

∑
i=1

(zi/C) = z/C, (4.14)

PN = (1/N)×V/C2, (4.15)

where z ≡
(

∑N
i=1 zi

)
/N denotes the sample mean.

Equations (4.14) and (4.15) show that repeated application of Bayesian
updating for time-independent systems without prior knowledge yields linear regression
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the ordinary least squares estimator, which is also known as linear re-
gression. Note that the expected (mean square) estimation error is
simply the variance PN of the posterior distribution (as it should be):

E
[
(x̂N − x)2

]
(4.14)
= E

( 1
N

N

∑
i=1

(zi/C)− x

)2
 (4.16)

(4.3)
= E

( 1
N

N

∑
i=1

vi

C

)2
 (∗)

=
V

NC2 = PN , (4.17)

where we used the assumption of white measurement noise in (∗):

E

( 1
N

N

∑
i=1

vi

C

)2
 =

1
N2C2

N

∑
i,j=1

E
[
vivj

]︸ ︷︷ ︸
V·δij

=
V

NC2 . (4.18)

Using PN = V/
(

NC2), we can simplify (4.12) to

x̂N = x̂N−1 +
1

NC
× (zN − Cx̂N−1) . (4.19)

Hence, the new state estimate x̂N is simply the old estimate x̂N−1 plus
a correction proportional to the difference between the measurement
zN and the expected measurement Cx̂N−1.

The term zN − Cx̂N−1 will later be referred to as the “innovation”,
while the proportionality constant 1/NC will be called the “Kalman
gain”. The Kalman gain generally depends on the relative uncer-“innovation” and

“Kalman gain” tainty of measurement and previous estimate. In our example, the
Kalman gain decreases with the number N of observations. This is
intuitively reasonable because it means that less and less weight is
given to new observations as the number of past observations (and
thus the certainty of the previous estimate) increases.

4.2.2.2 Vector case

The generalization to a (column) vector of state variables x and mea-
surement variables z is, in principle, straightforward. The measure-
ments z are now related to the system state x via a measurement ma-
trix C plus some (white, Gaussian, zero-mean) measurement noise v:linear measurement

zi = Cx+ vi, (4.20)

vi ∼ N (vi; 0, V) , E
[
viv

T
j

]
= V · δij. (4.21)

A small added subtlety arises because, in general, we cannot simply
invert the measurement matrix C to get an estimate of the state vector
x from the measurement vector z. Instead we have to use the right
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pseudoinverse and (A.4) to infer information about x from z. The likelihood function

likelihood function therefore takes a slightly more complicated form:

ρ(z|x) ∝ N
(
x; CT

(
CCT

)−1
z,
(

CTV−1C
)−1

)
. (4.22)

I define the prior and posterior distributions in complete analogy
to the scalar case such that x̂(−) (x̂(+)) and P(−) (P(+)) are expectation
value and covariance matrix of the prior (posterior) distribution, re-
spectively. Then a simple application of Bayes’ theorem (4.2) shows
that the posterior is characterized by the following covariance matrix
and expectation value (using (A.4), (A.2), and (A.3)) posterior covariance

& expectation value

P(+)−1
= P(−)−1

+ CTV−1C, (4.23)

x̂(+) = P(+)
(

P(−)−1
x̂(−) + CTV−1z

)
(4.24)

= x̂(−) + P(+)CTV−1 (z − Cx̂(−)) (4.25)

≡ x̂(−) + K
(
z − Cx̂(−)) ≡ x̂(−) + Kν. (4.26)

The inverse covariance matrix P−1 is a measure of information
about the system. Therefore, we can interpret CTV−1C in (4.23) as information gain

the information gained in the measurement. If measurement errors
are big, V−1 is small and only little information is gained. Similarly,
little information is gained if the measurement variables z couple
only weakly to the state variables x, i.e. if the measurement matrix C
is small.

The expectation value x̂ shifts, according to (4.26), by Kν, where change in x̂ =
innovation...the innovation

ν ≡
(
z − Cx̂(−)) (4.27)

is defined as the difference between actual and expected measure-
ment outcome, and the Kalman gain ...times Kalman gain

K ≡ P(+)CTV−1, (4.28)

is the weight that we accord to the new information.
The Kalman gain (4.28) can be rewritten in terms of the prior un-

certainty P(−) as follows [Ste94, pp. 312-314] Kalman gain

K = P(−)CT
(

CP(−)CT + V
)−1

. (4.29)

Note that, for V � CP(−)CT, i.e. if the measurement errors are
small compared to the prior uncertainty, we get negligible

measurement errors...

K ' P(−)CT
(

CP(−)CT
)−1

, (4.30)
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such that CK ' 1. In this case, we have

Cx̂(+) = CK
(
z − Cx̂(−))+ Cx̂(−) (4.31)

' 1
(
z − Cx̂(−))+ Cx̂(−) = z. (4.32)

Hence, for negligible measurement uncertainty, the estimate changes
such that the new estimate x̂(+) perfectly predicts the measurement
outcome.

For very large measurement uncertainty V � CP(−)CT, on the
other hand, the gain (4.29) is small. Hence, only little weight is at-...and large

measurement errors tached to the measurement result and the estimate x̂ changes little.
To sum up, given a measurement result z, the the estimation uncer-

tainty P and the state estimate x̂ are updated according to:Bayesian update
(vector case)

P(+)−1
= P(−)−1

+ CTV−1C, (4.33)

x̂(+) = x̂(−) + K
(
z − Cx̂(−)) , (4.34)

K = P(−)CT
(

CP(−)CT + V
)−1

. (4.35)

4.2.2.3 Joseph’s form of the covariance update

It will prove useful to rewrite (4.33), which specifies how to update
the estimation uncertainty P, in a slightly more general form. Recall
that P quantifies our expectation for the estimation error:

P(+)

i = E
[
ε(+)

i ε
(+)

i
T
]

, where (4.36)

ε(+)

i ≡ xi − x̂(+)

i , (4.37)

and analogously for P(−)
i and ε(−)i . A simple calculation [Ste94, p. 355]

shows that, during the measurement, the estimation error changes as:

ε(+)

i = (1− KiCi) ε
(−)
i − Kivi. (4.38)

Using (4.36) and (4.38), as well as E
[
viv

T
i
]
= V , we obtain the so-

called Joseph form of the covariance update:Joseph form

P(+)

i = (1− KiCi)P(−)
i (1− KiCi)

T + KiVKT
i . (4.39)

Note that, to derive (4.39), we used E
[
ε(−)i v

T
i

]
= E

[
viε

(−)
i

T
]
= 0. This

holds because vi is white and therefore uncorrelated to everything
before measurement i (hence also uncorrelated to ε(−)i ).

The Joseph form (4.39) has two advantages over (4.33):
First, it is more general since it also tells us how the estimation error

changes if we do not use the gain (4.35) in the measurement update.applicable to other gains

In fact, we will have to change the gain to account for correlations of
process and measurement noise. We could, however, also be forced to
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use a different (suboptimal) gain because the optimal gain might be
hard to compute or we might not know the correct state space model.

Second, the Joseph form explicitly preserves symmetry and posi-
tive definiteness of the estimation error covariance matrix [Ste94, p.
355]. If the Kalman filter is implemented on a computer, using the numerically stable

Joseph form ensures that these properties are preserved even in the
presence of numerical rounding errors [see Ste94, p. 354]. For this
reason, the Joseph form of the covariance update is sometimes also
called the “stabilized Kalman filter”.

4.2.3 State space models

Only one ingredient is missing for the full Kalman filter: The system
state x evolves in time between successive measurements and this
needs to be taken into account when calculating the state estimate. In
our experiment, both the time evolution and the measurements are
linear and subject to white, zero-mean Gaussian noise. Hence, the
full experiment can be described by a state space model of the form state space model

xi = Axi−1 +wi−1, (4.40)

zi = Cxi + vi. (4.41)

(4.40) describes the time evolution of the system state x. The process process matrix &
process noisematrix A describes the deterministic part of the time evolution. A

stochastic element is included in the form of the so-called process noise
w which is assumed to be a zero-mean Gaussian white-noise process
with covariance matrix W = E

[
wwT

]
:

wi ∼ N (wi; 0, W) , E
[
wiw

T
j

]
= W · δij. (4.42)

(4.41) describes measurements. The measurement noise v satisfies measurement noise

vi ∼ N (vi; 0, V) , E
[
viv

T
j

]
= V · δij. (4.43)

We assume, for now, uncorrelated measurement and process noise:

E
[
viw

T
j

]
= 0. (4.44)

Suppose we know the conditional state ρ(+)

i−1 after a measurement
at time i − 1. Assuming that the system evolves according to (4.40): time evolution of

conditional statesWhat is the conditional state ρ(−)
i at time i? What are x̂(−)

i and P(−)
i ?

We find, for the evolution of the state estimate x̂,

x̂(−)
i = E [xi] = E [Axi−1 +wi−1] (4.45)

= A E [xi−1] + E [wi−1] = Ax̂(+)

i−1, (4.46)
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where expectation values E [. . .] refer to the posterior ρ(+)

i−1.
Therefore, the estimation error ε evolves as follows:

ε(−)i ≡ xi − x̂(−)
i

(4.46)
= xi − Ax̂(+)

i−1 (4.47)
(4.40)
= A

(
xi−1 − x̂(+)

i−1

)
+wi−1 (4.48)

(4.36)
= Aε(+)

i−1 +wi−1. (4.49)

Hence, the estimation error covariance matrix P evolves as

P(−)
i = E

[
ε(−)i ε

(−)
i

T
]
= AP(+)

i−1 AT + W . (4.50)

To derive (4.50), we used E
[
ε(+)

i−1w
T
i−1

]
= E

[
wi−1ε

(+)

i−1
T
]
= 0, which

holds since w is a white-noise process and wi−1 only influences the
system state at time i (and later), according to (4.40).

Hence, the effect of time evolution on the conditional state iseffect of time evolution

x̂(−)
i = Ax̂(+)

i−1, (4.51)

P(−)
i = AP(+)

i−1 AT + W . (4.52)

The process matrix A describes a deterministic, linear evolution, hence
rotations in phase space plus, potentially, damping or amplification.
Correspondingly, the effect of A on the error covariance matrix P
is a rotation and/or contraction or expansion. The additional term
W leads to an increased error covariance, hence describes a loss of
information due to the unknown process noise w.

We have seen before (in (4.34), (4.39), (4.35)) that the effect of the
measurement on the conditional state iseffect of measurement

x̂(+)

i = x̂(−)
i + Ki

(
zi − Cx̂(−)

i

)
, (4.53)

P(+)

i = (1− KiCi)P(−)
i (1− KiCi)

T + KiVKT
i , (4.54)

Ki = P(−)
i CT

(
CP(−)

i CT + V
)−1

. (4.55)

Hence, the effect of the measurement on the expectation value is a
shift in phase space by Ki

(
zi − Cx̂(−)

i

)
.

Using the optimal gain (4.55), we can rewrite (4.54) as

1/P(+)

i = 1/P(−)
i + CTV−1C. (4.56)

Hence, due to the measurement, 1/P(+)

i increases by CTV−1C, which
represents the information gain due to the measurement.
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4.2.4 Kalman filter

The five equations (4.51)–(4.55) taken together represent the full discrete-
time Kalman filter [Kal60]. By substituting (4.53) and (4.54) into (4.51)
and (4.52) or vice versa, and using (4.56), we can reduce these five
equations to three equations for the evolution of the prior states evolution of priors

x̂(−)
i+1 = A

(
x̂(−)

i + Ki

(
zi − Cx̂(−)

i

))
, (4.57)

P(−)
i+1 = A

(
1/P(−)

i + CTV−1C
)−1

AT + W , (4.58)

Ki = P(−)
i CT

(
CP(−)

i CT + V
)−1

, (4.59)

or, alternatively, three evolution equations for the posterior states: evolution of posteriors

x̂(+)

i = Ax̂(+)

i−1 + Ki

(
zi − CAx̂(+)

i−1

)
, (4.60)

1/P(+)

i =
(

AP(+)

i−1 AT + W
)−1

+ CTV−1C, (4.61)

Ki = P(+)

i CTV−1, (4.62)

where (4.62) follows from the identity P(+)=(1− KC)P(−) (which can
be obtained from (4.33) using the Woodbury identity [P+08, eq. 156])
together with 1/P(−) =

(
1/P(+) − CTV−1C

)
, which follows from

(4.33).
The interplay between information gain due to the measurement

and information loss due to the process noise can, under certain con-
ditions, imply the existence of a steady state P(+)

∞ for the uncertainty steady state

P, characterized by the condition30 30 Also known as the
discrete-time algebraic
Riccati equation.1/P(+)

∞ =
(

AP(+)
∞ AT + W

)−1
+ CTV−1C, (4.63)

1/P(+)
∞ can then be interpreted as the maximum amount of informa-

tion we can gather by an arbitrary number of observations on the
system. (4.63) is a non-linear matrix equation which can, in general,
only be solved numerically (if a steady state solution exists).

4.2.4.1 Correlated measurement and process noise

Contrary to our assumptions so far, process and measurement noise
are correlated in our experiment. Therefore, we need to generalize
the previous equations slightly. If process and measurement noise
are correlated, the measurement also provides information about the
process noise. This additional information about the process noise
must be incorporated in the state estimate. This is achieved by adapt-
ing the Kalman gain as follows.
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Assume that process noise w and measurement noise v are white
and jointly Gaussian with correlation matrix

M ≡ E
[
wi−1v

T
i

]
. (4.64)

Then, the correct Kalman gain (4.55) is given by [Ste94, eq. 4.4-17]

Ki =
(

P(−)
i CT + M

) (
CP(−)

i CT + CM + MTCT + V
)−1

. (4.65)

To correctly incorporate the cross-correlation between measurement
and process noise in the full Kalman filter equations, we can use the
Joseph form (4.39) of the update equation for the estimation error
together with the gain (4.65).

4.2.4.2 Continuous-time systems

Our experimental system is described by a continuous-time linear
state space model which can, most generally, be written as:

ẋt = Atxt +wt, (4.66)

zt = Ctxt + vt, (4.67)

Here, the process matrix At and measurement matrix Ct are indexed
with a subscript t, indicating a possible time-dependence. Process
noise wt and measurement noise vt are, again, zero-mean Gaussian
white-noise processes with covariance matrices W and V and correla-
tion-matrix M:

E
[
wtw

T
τ

]
= Wδ(t− τ), E

[
vtv

T
τ

]
= Vδ(t− τ), (4.68)

E
[
wtv

T
τ

]
= Mδ(t− τ). (4.69)

The time-continuous Kalman filter for a state space model of the
form (4.66)–(4.67) was first derived in [KB61] and can be obtained
from the discrete version presented above by letting ti − ti−1 → 0.
The time-continuous Kalman filter is a set of differential equations
which yields the optimal estimate x̂t and estimation error covariance
Pt as a function of time t:

˙̂xt = Atx̂t + Kt(zt − Ctx̂t), (4.70)

Ṗt = AtPt + Pt AT
t + W − KtVKT

t , (4.71)

Kt = (PtCT
t + M)V−1. (4.72)

If measurements start at t = 0, the values x̂0 and P0 are the initial
conditions for the differential equations above. They are defined by
the prior at t = 0, i.e. the unconditional state of the system. The
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same is true, of course, for the discrete Kalman filter, which is a set
of recursive equations in which x̂0 and P0 (again defined by the un-
conditional state) are the initial conditions. For a continuously driven
optomechanical system, the unconditional state is the steady state so-
lution of the quantum Langevin equations (4.77)–(4.80).

4.2.4.3 Discrete sampling

The observations zt in our experiment are, however, not continuous
in time but discrete (sampled with a finite sampling rate), so that the
continuous-time Kalman filter (4.70)–(4.72) is not directly applicable.
Therefore we actually use the discrete-time Kalman filter presented in
Section 4.2.4 using a discretized version of the continuous-time state
space model of the optomechanical system. We proceed as follows:

1. We determine a suitable continuous-time model of the form
(4.66)–(4.67) describing the state evolution and measurements
of the optomechanical system. Section 4.3 explains how a suit-
able model can be found.

2. We discretize the continuous model. For more information re-
garding the relation of discretely sampled continuous systems
to discrete-time systems see [Ste94, pp. 326-329].

3. Finally, we use the discretized state space model to implement
the discrete-time Kalman filter according to the equations pre-
sented in Section 4.2.4.

4.2.4.4 Quantum interpretation

So far, we considered classical Gaussian systems, i.e. classical sys-
tems which are subject to a linear time evolution, driven by white
noise, and on which linear, noisy measurements are performed. The
class of systems fitting this description is very large. Therefore, the application to

classical systemsKalman filter has been widely applied since the 1960s in many fields
of engineering and applied science, from aeronautics [GA10] to noise
cancellation in gravitational wave detectors [FM01].

But in fact, the Kalman filter is applicable not only to classical
systems but also to open quantum systems such as the cavity op-
tomechanical systems used in our experiments. Assume the time-
dependent Heisenberg operators xt of an open quantum system—I
leave out the operator “hats” on xt in what follows to avoid con-
fusion with the state estimate x̂t—obey a set of quantum Langevin
equations of the form (4.66), (4.67). Then the solution x̂t and Pt to relation of Kalman filter to

stochastic master equationthe corresponding Kalman filter equations (4.70)–(4.72) is equivalent
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to the conditional quantum state ρt (conditioned on the previous mea-
surement outcomes zτ, 0 ≤ τ ≤ t), in the following sense:

x̂t = tr (xρt) , (4.73)

Pt = Re
{

tr
(
xxTρt

)}
− x̂tx̂

T
t , (4.74)

where x are the (time-independent) Schrödinger operators correspond-
ing to the (time-dependent) Heisenberg operators xt. Re {. . .} de-
notes the real part and is necessary to obtain a symmetric covariance
matrix, since the Schrödinger operators x generally do not commute
with themselves.

(4.73)–(4.74) means that the optimal estimate x̂t is the expectation
value of the Schrödinger operators x for the system in the condi-
tional state ρt and the estimation uncertainty Pt is the symmetrized
covariance matrix of the system in the conditional state ρt [Bel80].
Since the system is Gaussian and the measurements linear, the con-
ditional quantum state ρt is a Gaussian state. Hence, ρt is uniquely
parametrized by the solutions x̂t and Pt to the corresponding classical
optimal estimation problem [Bel80]. Note that the conditional state ρt

is the solution to the stochastic master equation, a generalization of
the Schrödinger equation which gives the time evolution of the condi-
tional system state including the influence of noise and conditioned
on continuous measurements of the system. In this sense, the clas-
sical optimal estimation problem solves the corresponding stochastic
master equation (at least for Gaussian systems).

Note that, in the quantum case, the noise processes wt and vt are
generally non-commutative. Strictly speaking, the covariance ma-non-commutative noise

trices V , W and the correlation matrix M in equations (4.66), (4.67),
should therefore in the quantum case be defined as

Re
{

E
[
wtw

T
τ

]}
= Wδ(t− τ), Re

{
E
[
vtv

T
τ

]}
= Vδ(t− τ), (4.75)

Re
{

E
[
wtv

T
τ

]}
= Mδ(t− τ). (4.76)

4.3 state space model for our experiment

In the following section, I explain how to obtain a suitable continuous-
time state space model of the form (4.66), (4.67) as the basis for the
Kalman filter. The experimental setup used for the Kalman filter ex-
periment was presented in Section 3.4. It consists of a laser source
driving two optical cavity modes at different frequencies which inter-
act with a mechanical oscillator. One of the cavity modes is driven
weakly and on resonance; the other is driven red-detuned by ωm (the
frequency of the fundamental mechanical mode) and with variable
optical power. The reflected light for both cavity modes is detected
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using two different homodyne detection setups. The digitized mea-
surement signals from these homodyne detections are the raw data
on which our Kalman filter operates.

For simplicity, I will decompose the full state-space model into
three separate parts and explain each of them in turn. These are: overview

• The core cavity-optomechanical system (Section 4.3.1) consist-
ing of two optical intra-cavity modes (driven by shot noise and
classical laser noise) and, coupled to the optical intra-cavity
modes, several mechanical modes (driven by white thermal noise).

• Loss and detection (Section 4.3.3). This models the optical losses
in between the optomechanical cavity and the homodyne detec-
tion as well as the homodyne detection itself, which is affected
by shot noise and classical laser noise.

• The colored laser noise (Section 4.3.2) which drives the optical
intra-cavity modes (in addition to the white shot noise).

Since a very detailed discussion of the state space model was pre-
sented in [Wie+15, Supplemental Material], I will keep the discussion
here brief and limited to the essential ideas.

4.3.1 Cavity optomechanical model

The basis of the state space model are the quantum Langevin equa-
tions for the coupled optomechanical system. The equations were
introduced in Section 2.6 for the case of a single optical mode; they
have to be extended to account for the simultaneous coupling of the
mechanical system to two optical cavity modes, which we distinguish
by subscripts r and d for “resonant” and “detuned”, respectively: quantum Langevin

equations for optical
intracavity modes and
mechanical mode(s)

q̇ = +ωm p, (4.77)

ṗ = −ωmq− γm p + ∑
i=r,d

gi (cos (θi) xi − sin (θi) yi)−
√

2γm f , (4.78)

ẋi = −κxi + ∆iyi + gi sin (θi) q +
√

2κ1xin
i,1 +
√

2κ2xin
i,2

. . . + 2
√

κ1δαin
i,1 + |αi| sin (θi) φ̇i, (4.79)

ẏi = −κyi − ∆ixi + gi sin (θi) q +
√

2κ1yin
i,1 +
√

2κ2yin
i,2

. . . + |αi| cos (θi) φ̇i, (4.80)

where ∆i and gi are the detuning and optomechanical coupling of the
optical mode with index i, respectively, and θi ≡ arctan

(
∆i
κ

)
. xi and

yi are the amplitude and phase quadrature of the optical intracavity
mode i (i ∈ {r, d}), which satisfy canonical commutation relations
[xk, yl ] = iδkl , and q and p are mechanical position and momentum
quadrature, respectively, satisfying [q, p] = i. In principle, q and p
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should also carry subscripts since, in our experiment, multiple me-
chanical modes couple significantly to the optical modes. To explicitly
include these additional mechanical modes, we simply append the
equations (4.77)–(4.78) for each additional mode and replace coupling
terms like sin (θi) giq by sums of the form sin (θi) (gi1q1 + . . . + gimqm),
where gim is the linearized coupling of the m-th mechanical mode to
the cavity mode with index i.

Suppressing again the additional mechanical modes for the sake of
legibility, the system’s state vector can be written as

xt ≡ (q, p, xd, yd, xr, yr)
T . (4.81)

Using the definition (4.81) of the state space vector, we can now di-
rectly read off the process matrix A describing the time evolutionprocess matrix

of the optomechanical system according to (4.66) from the quantum
Langevin equations (4.77)–(4.80). The results are provided in [Wie+15,
Supplemental Material, (12)–(16)].

The driving noise forces in (4.77)–(4.80) are: Optical shot noise (xin
i,1,white driving noise

yin
i,1, xin

i,2, and yin
i,2) with variance 1/2 acting on the optical intracavity

quadratures. And white thermal noise f acting on the mechanical
momentum quadrature; f has variance n̄ + 1/2, where n̄ ' kBT/h̄ωm

is the mean occupation number of the bath at temperature T and the
frequency of the mechanical mode ωm. This defines the process noise
vector wt and its covariance matrix W in (4.40) and (4.42).

There are two additional noise terms φ̇i and δαin
i,1 in (4.77)–(4.80),

which describe the classical frequency and amplitude noise of thecolored laser noise

driving laser fields (the subscript i again distinguishes between res-
onant and detuned beam). Unfortunately, these noise terms are not
white but strongly frequency-dependent, as discussed in Section 3.1.5.
But the Kalman filter as presented above requires a state space model
which is exclusively driven by white-noise terms. To correctly ac-
count for these noise terms, we therefore have to extend the state
space model as described in the next section.

4.3.2 Colored noise model

Our original system can be written in the formoriginal state space model

ẋt = Atxt +wt + ξt, (4.82)

where wt denotes the white noise forces and ξt is a (vector-valued)
noise term with a non-white spectral dependence. Note that the col-
ored noise term ξt in (4.82) is related to the colored laser noise terms
φ̇i and δαin

i,1 in (4.77)–(4.80) by a simple linear transformation, which I
will not spell out here.

Assume now that ξt is itself described by a state space modelstate space model for
colored noise



4.3 state space model for our experiment 81

ξ̇t = Fξt + ζt, (4.83)

where the driving noise ζt is white with covariance matrix W . Then
the spectrum of the noise ξt is given by

Sξ(Ω) = H(Ω)W H(−Ω)T, (4.84)

where H(Ω) = −(iΩ + F)−1 is the process’s transfer function. If we
can find a process matrix F such that (4.84) matches the experimen-
tally measured spectrum of the noise ξt, we have a state space model
which is driven only by white noise and reproduces the spectral char-
acteristics of the colored noise.

Then, we can simply add up the two state space models (4.82) and
(4.83) by defining an extended state vector yt ≡ (xT

t , ξT
t )

T whose time
evolution is given by the following extended state space model extended state space model

ẏt =

(
At 1n

0 F

)
yt +

(
wt

ζt

)
. (4.85)

Note that this model is now driven only by the white noise process(
wT

t , ζTt
)
. By simply disregarding the extra components ξt in the ex-

tended state space vector yt = (xT
t , ξT

t )
T, we end up with a state space

model which describes the time evolution of the state space vector xt

but nevertheless is only driven by white noise. This extended state
space model can therefore be used as the basis for the Kalman filter.

Hence, we only need to find suitable state space models of the
form (4.83) which reproduce the (experimentally measured) spectral
characteristics of the driving classical laser noise φ̇i and δαin

i,1 in our
experiment. We identified suitable models with the MATLAB system model identification for

colored laser noiseidentification toolbox, using experimentally recorded time traces of
the amplitude and frequency noise as input [see Wie+15, SM, II.B.].
Corresponding spectra were presented in the experimental chapter
(see Section 3.1.5). We separately modeled three different types of
laser noise: Broadband amplitude and phase noise, narrow-band low-
frequency noise due to the laser lock, and the strong narrow-band
phase modulation of the resonant beam at 20 MHz (used for PDH-
locking of the laser to the optomechanical cavity).

4.3.3 Loss and detection model

The measurements to which we apply the Kalman filter are homo-
dyne measurements of generalized quadratures zφ,d and zφ,r of the input to the Kalman filter:

homodyne measurementsreflected light field for the detuned and resonant beam, respectively.
These are defined by

zφ,i ≡ cos (φ) xi + sin (φ) yi (i = {r, d}) .
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For the resonant beam, the homodyne detector was locked to the
phase quadrature (φd ' 90°). For the detuned beam, on the other
hand, the homodyning phase was actually slowly scanned in time.
This time-dependent homodyning phase can easily be incorporated
in the Kalman filter. For the plots presented below, however, only
data corresponding to a homodyne measurement of the amplitude
quadrature of the detuned beam (i.e. φr ' 0°) was selected.

The generalized quadratures of the optical modes after reflection at
the optomechanical cavity are, according to the cavity input-output
relations (2.53), given byextra-cavity quadratures

z′i =
(√

2κ1 xi + xin
i,1 + δαin

i,1

)
cos φi +

(√
2κ yi + yin

i,1

)
sin φi, (4.86)

In principle, (4.86) also contains a classical phase noise term propor-
tional to φi. But this classical phase noise is common between local
oscillator and signal and is therefore invisible in homodyning. We
therefore do not need to include it in (4.86). The amplitude noise
δαin

i,1, on the other hand, contributes to the homodyning signal and
must therefore be included. xin

i,1 and yin
i,1 are shot noise terms which

are perfectly correlated with the corresponding shot noise terms driv-
ing the intracavity modes according to (4.79) and (4.80). They are
δ-correlated in time and have variance 1/2.

The Kalman filter assumes the measurement noise to be white (see
(4.41) and (4.43)). This is true for the noise terms xin

i,1 and yin
i,1. Thecolored measurement noise

laser amplitude noise term δαin
i,1, on the other hand, is—in the context

of the extended state space model (4.85)—not considered a noise term,
but part of the state vector. The noise term δαin

i,1 is therefore automat-
ically taken into account by the correct choice of the measurement
matrix (which relates the state vector to the measured variables).

Some of the light which is reflected from the optomechanical cav-
ity is lost on its way to the homodyne detection setups. These opticaloptical losses and

inefficient detection losses, together with the inefficiencies of the photodetectors, can be
modeled by beam splitter losses of strength ηi. The signals we actu-
ally measure are therefore described by

zi =
√

1− η z′i +
√

η zin
i , (4.87)

where zin
i describes the additional shot noise (with variance 1/2) as-

sociated with the optical losses. Note that the shot noise term zin
i is

statistically uncorrelated to the shot noise terms xin
i and yin

i .
The response of our homodyne detectors is itself frequency-depen-

dent. The frequency dependence of the detection is partially due todetector characteristics

a band pass intrinsic to the detector circuits and partially due to an
additional passive 12 MHz low pass filter in the signal path. The latter
is necessary to suppress a very strong signal at 20 MHz (due to the
PDH-modulation) far enough to prevent it from saturating our DAQ
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system. To model the frequency dependent detector response, we
resort once more to an extension of the state space model as discussed
in Section 4.3.2. The measured quadratures are now considered part
of an extended state space vector

y′t ≡ (xT
t , ξT

t , zTt , ζTt )
T, (4.88)

where zt are the quadratures we would measure with perfect (frequency-
independent) detectors and ζt are the actually measured quadratures.
If the transfer function of the detector is given by H(Ω) = −(iΩ +

F)−1, then real and ideal measurements are related by

ζ̇t = Fζt + zt. (4.89)

Combining (4.86)–(4.89) for the measurements with the extended
model (4.85) for the time evolution of the state vector, we can now complete state space model

write the complete state space model for our experiment in the form
(4.66)–(4.67). A suitably discretized version of this model then com-
pletely defines the Kalman filter which we apply to the measurements
which are digitized at a rate of 50 MHz.

4.4 results from kalman filtering

In this section, I explain the main results of the experiment published
in [Wie+15]. I first explain how we assessed the accuracy of the filter
(Section 4.4.1), then present example traces for the estimated quadra-
tures in the weak and strong coupling regime (Section 4.4.2), and
finally discuss the covariances of estimated quadratures and condi-
tional cooling of the mechanical subsystem (Section 4.4.3).

4.4.1 Innovation sequence

Figure 4.1 shows measurements zr and zd and the corresponding
Kalman filter predictions ẑr and ẑd (together with their expected un-
certainties) over a period of 2 µs (100 sample points), for the reso-
nant and detuned beam. In this figure (and all subsequent ones in
this section), two different coupling regimes for the detuned beam
are compared: weak coupling (gd ' 0.2× κ; left panels) and strong
coupling (gd ' 1.68× κ; right panels).31 For both weak and strong 31 Note that the resonant

beam is weakly coupled in
both cases (gr ' 0.2× κ).

coupling, the Kalman filter predictions match the measurements very
well within the expected uncertainty. To assess the quality of the filter
more quantitatively, we analyzed the innovation sequence.

The innovation sequence (plotted below the main plots in Figure 4.1)
is defined as the difference between actual and predicted measure- innovation sequence



84 state estimation using kalman filtering

Figure 4.1. Observed and predicted measurement signals for weak cou-
pling (left) and strong coupling (right). The top panels (red) refer to the
detuned beam, bottom panels (blue) to the resonant beam. The actual
measurements zd and zr are marked with colored dots, the Kalman fil-
ter predictions ẑd and ẑr are drawn as gray lines in the background; the
width of the lines indicates the ±2σ-uncertainty of the predictions. The
innovations νi = zi − ẑi are shown below the main plots. If the system
model is accurate, the innovations are a zero-mean, white, Gaussian
noise. The expected variance σ2 of the innovations can be predicted
from the system parameters. The percentage of measured innovations
which fall within ±2σ around zero (indicated by horizontal gray lines)
is displayed next to the innovation-plots; theoretically, the ratio should
be ' 95 %, the measured values are all close to 95 %. The statistics of
the innovations is analyzed in more detail in Figure 4.2. Note that ob-
served and predicted measurements for the resonant beam (zr and ẑr )
are dominated by the 20 MHz-modulation for the PDH-lock. This mod-
ulation is well incorporated in our state space model as evidenced by
the good fit of the innovations νr = zr − ẑr. Plots taken from [Wie+15].
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ment outcome

νt ≡ zt − ẑt ≡ zt − Ctx̂t (4.90)

= Ctxt + vt − Ctx̂t. (4.91)

Using the definition of the estimation error εt ≡ xt − x̂t, the innova-
tions can be written as νt = Ctεt + vt. Since the measurement error
vt and state estimation error εt are uncorrelated and Gaussian with
zero-mean, also the innovation νt is Gaussian with zero-mean [Hei04,
sec. 8.4.1]. Its covariance matrix St is given by statistics of

innovation sequence

St ≡ E
[
νtν

T
t

]
= Ct E

[
εtε

T
t

]
CT

t + E
[
vtv

T
t

]
= CtPtCT

t + V . (4.92)

In addition, the innovation sequence is also white [Hei04, sec. 8.4.1].
Using the Cholesky decomposition LtLT

t = St of the innovation
covariance St, we can define a normalized innovation sequence (NIS) normalized innovation

sequence (NIS)

ν̃t ≡ L−1
t νt. (4.93)

The normalized innovation sequence is a Gaussian zero-mean, unit-
variance, white-noise process:

ν̃t ∼ N (ν̃t; 0, 1) , E
[
ν̃tν̃

T
τ

]
∝ δ (t− τ) . (4.94)

(4.94) holds only if the state space model accurately describes the ex-
periment. We can therefore check the quality of the implemented fil- statistics of innovations

as consistency checkter—and therefore, indirectly, of the underlying state space model—by
analyzing the distribution of the NIS and comparing it to (4.94).

For our experiment, the measured NIS is, indeed, almost perfectly
distributed according to a zero-mean, unit-variance Gaussian (see Fig-
ure 4.2 (a)). Also, the spectra of the NIS are indeed approximately
white, over a wide frequency range (see Figure 4.2 (b)). The main spectra of innovations

deviations of the NIS spectra from a white spectrum are well un-
derstood: The broadband suppression at low frequencies can be at-
tributed to an imperfect model of the detector response. And the very
sharp noise peaks at frequencies of a few MHz correspond to unmod-
eled laser noise due to excited resonances of the laser cavity piezo.
Since remaining errors of the model can often be identified based on
their frequency-dependence, the spectra of the NIS are very helpful
for improving the system model.

Apart from these checks based on the experimentally measured
NIS, we also checked the Kalman filter using simulations. Such si- simulation based tests

mulation-based tests obviously say nothing about the quality of the
system model, but they can help to detect problems with the numer-
ical implementation of the Kalman filter. We simulate time traces of
the system state and the corresponding measurements using the state
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NIS NIS NISNIS

N
IS

Figure 4.2. Statistics of the normalized innovation sequence (NIS).
(a) Cumulative distribution functions (CDF) and histograms (PDF) of
the experimentally measured NIS; red and blue for detuned and reso-
nant beam) in comparison to the theoretical expectations (in gray) for
a zero-mean, unit-variance Gaussian noise. (b) Noise power spectrum
of the NIS (which is expected to be white). Horizontal shaded areas
indicate the ±2σ band around the expected noise power. This band
should contain roughly 95 % of the data points of the measured noise
power spectrum. The actual percentages (displayed in color next to
the spectra) are around 90 % for the resonant and around 93 % (92 %)
for the detuned beam in weak (strong) coupling. Vertical shaded ar-
eas around 1.28 MHz indicate the regions, where the measurements
are dominated by the fundamental mechanical mode. Plots taken from
[Wie+15, Supplemental Material].
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Figure 4.3. Kalman filter estimates of intracavity quadratures. The esti-
mates are in units of ground state uncertainty, the shaded areas around
the estimated traces indicate the ±1σ estimation uncertainty. The top
and middle panels show estimates for the detuned beam (red) and res-
onant beam (blue), respectively, for both the amplitude quadratures x̂i
(solid lines) and the phase quadratures ŷi (dotted). Note that x̂r is a hor-
izontal line close to zero; this is expected since the mechanical motion
does not couple to the amplitude quadrature for a resonant beam. The
bottom panels shows the estimated position q̂ and momentum p̂ for
the fundamental mechanical mode, which oscillate at the mechanical
frequency ωm '2π × 1.278 MHz. In the strong coupling regime (right
panels), the mechanical motion is strongly suppressed due to sideband
cooling. Plots taken from [Wie+15].

space model of the experiment. Then we apply the Kalman filter to
the simulated measurements. This yields predicted measurements
and predicted state variables. Using the predicted measurements, we
calculate the NIS and check that it is indeed distributed as expected.
Using the predicted state variables, on the other hand, we calculate
the estimation errors and check that they are also distributed as ex-
pected (zero-mean with covariance Pt). The latter is possible only in
simulations, of course, since the state variables are unknown in the
actual experiments.

Note that simulations are useful not only for guarding against pos-
sible mistakes in the implementation of the Kalman filter; they can
also help to build intuition for the model and the Kalman filter since
they allow us to directly compare the estimated and simulated state
variables.

4.4.2 Weak and strong coupling

Figure 4.3 shows the optimal estimates of the intracavity quadra-
tures for the optical modes and the fundamental mechanical mode.
These estimates are the result of applying the Kalman filter to the
measurement data shown in Figure 4.1. Again, we compare two
regimes—weak coupling and strong coupling of the detuned beam—
which yield markedly different results.
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In the weak coupling regime, the fundamental mechanical mode
oscillates coherently, driven by thermal noise. The quadratures ofweak coupling

the detuned beam, x̂d and ŷd, are strongly correlated with the me-
chanical quadratures, q̂ and p̂, respectively. This is a signature of
the beam-splitter interaction, which swaps the mechanical state onto
the detuned beam. For the resonant beam, on the other hand, only
the phase quadrature ŷr oscillates coherently, while the amplitude
quadrature x̂r is dominated by shot noise. This is because for a res-
onant beam, only the phase quadratures couples to the mechanical
motion.

For strong coupling of the detuned beam, the amplitudes of motion
for the mechanical mode and the resonant beam are much smaller
due to sideband cooling of the mechanical mode. Nevertheless, thestrong coupling

resonant phase quadrature ŷr and the mechanical position q̂ are still
correlated. The quadratures of the detuned beam, on the other hand,
fluctuate more strongly than the mechanical quadratures now. This
is because thermal energy of the oscillator is dumped into the de-
tuned beam. Note that the estimation uncertainty for the detuned
beam is larger for strong coupling than for weak coupling. This is
an experimental artifact. For technical reasons, we had to attenuate
the detuned beam before the detection for the strong coupling mea-
surements. Consequently, the signal to noise ratio was worse in this
case.

Despite these clear differences between weak and strong coupling
regarding the system dynamics, the Kalman filter innovations clearly
fit the expectations in both cases (see Figure 4.2). This illustrates the
versatility of the Kalman filter, which can be applied independently
of the system parameters (as long as the system is in the Gaussian
regime). Note that we do not need a new system model to achieve op-
timal state estimation for a different coupling regime. We only have
to change the coupling strength gd in the existing model. In prac-
tice, we also need to fine-tune some other parameters, such as the
strength of the low-frequency phase and amplitude noise (changes
with the lock condition of the laser), the exact value of the detuning,
plus permille-level adjustments to the frequencies of some mechani-
cal modes.

4.4.3 Conditional cooling

Figure 4.4 shows examples of estimated phase-space trajectories of
the intracavity system state. Since the estimated system state x̂t isphase space trajectories

more than two-dimensional, we have to project down to two quadra-
tures to be able to plot phase space trajectories. The top panels
show trajectories (q̂t, p̂t) for the fundamental mechanical mode dur-
ing 100 µs. These trajectories illustrate the Brownian motion of the



4.4 results from kalman filtering 89

Figure 4.4. Kalman filter estimates in phase space for weak coupling
(left) and strong coupling (right). Top panels show estimates (q̂t, p̂t)
of the mechanical position and momentum for a 100 µs-trace; bottom
panels show analogous plots for ŷr and q̂. Everything in units of
ground state uncertainty. Histograms of the estimated quadratures
(from 10 ms-traces) are shown on top and to the right of the phase-
space plots. The covariances of the unconditional (conditional) state
are displayed on top of the trajectories as a dashed (solid) ellipse. Note
that the the unconditional state ellipses are not filled by the estimated
trajectories because of their limited duration of only 100 µs. Plots taken
from [Wie+15].

mechanical oscillator, i.e. thermally driven damped motion with a
strong harmonic component. The marginal distribution of q̂t and p̂t

are illustrated by histograms on top and to the right of the phase
space plots (histograms are based on 10 ms-traces to gather suffi-
cient statistics). As expected for thermally driven mirror motion, the
marginal distributions are Gaussian.

The plots in Figure 4.4 should be compared to analogous plots in
the pioneering experiment on reconstruction of the mechanical phase
space [Bri+03, fig. 3]. A clear advance over earlier experiments such
as [Bri+03] is that the Kalman filter also provides the estimation er-
ror covariance matrix Pt. Recall that estimation errors are distributed estimation error

according to a Gaussian with zero mean and covariance matrix Pt.
The estimation error Pt can therefore, when projected onto a two-
dimensional subspace, be illustrated by ellipses (solid lines in the
phase space plots in Figure 4.4). In general, the estimation errors
for different components of the state vector can be correlated, corre-
sponding to ellipses which are skewed with respect to the coordinate
axes.
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The estimation error is our uncertainty about the system state af-
ter the measurements, i.e. conditional on the measurements (“condi-
tional uncertainty”). The variance of the unconditional state (i.e., theconditional cooling

steady state), on the other hand, is our uncertainty about the sys-
tem state prior to any measurement (“unconditional uncertainty”).
Comparing the conditional and unconditional uncertainty therefore
yields a measure of the information we gained in the measurements.
Figure 4.4 compares the conditional uncertainties (solid line ellipses)
to the unconditional uncertainties (dashed ellipses). The conditional
uncertainty is significantly reduced compared to the unconditional
one, corresponding to a reduction in effective temperature by a fac-
tor of 27 in the case of weak coupling. Because the Kalman filter is
optimal, this reduction in uncertainty is the optimum given our ex-
perimental setup. Note that the reduced effective mode temperature
for the conditional state is closely related to (but not identical with)
the steady-state mode temperature which can be achieved via optimal
feedback cooling using the Kalman filter estimates [see HH15].

The unconditional uncertainty of the mechanical system is much
smaller for strong coupling than for weak coupling. This is a resultunconditional cooling

of the (unconditional) sideband cooling due to the detuned beam.
The conditional uncertainty, however, is very similar in both coupling
regimes. Correspondingly, the conditional cooling effect is much
weaker for strong coupling than for weak coupling. This is an ar-
tifact of our measurement: For technical reasons, we had to atten-
uate the detuned beam to the same optical power in both coupling
regimes before the detection.32 Therefore, the detuned beam cannot32 This attenuation has

been taken into account in
the state space model.

provide more information in the strong coupling case (which it nor-
mally would).

The bottom panels in Figure 4.4 show estimated trajectories of the
resonant phase quadrature ŷrand the position q̂ of the fundamen-
tal mechanical mode. This illustrates another clear advantage of the
Kalman filter over [Bri+03]: The Kalman filter allows us to estimate
the not only mechanical quadratures, but also the intracavity light
quadratures themselves (and any other modeled system variable).
The uncertainty ellipses in Figure 4.4 show that the resonant phase
quadrature and the position of the fundamental mechanical mode are
correlated both unconditionally (as expected from the optomechani-
cal interaction) as well as conditionally. Note that the unconditional
correlation of these quadratures is far from perfect. This makes sense
since multiple mechanical modes as well as classical laser noise in-
fluence the resonant phase quadrature. Despite this underwhelming
correlation, the Kalman filter can salvage a surprising amount of in-
formation about the position of the fundamental mechanical mode
from the resonant phase quadrature by systematically taking into ac-
count the full system dynamics. In previous experiments, estimation
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of the mechanical position from measurements of the light quadra-
tures was only achieved in an ad-hoc fashion, by band-pass filtering
the measurement signals around the mechanical resonance.

4.5 discussion and outlook

As mentioned, state estimation has been realized in cavity optome-
chanics already a long time ago. Let me therefore quickly summarize
previous experimental work and the main advances of our approach
over it. Some of the earliest experiments in optomechanics demon- previous work

strated real-time estimation of the mechanical position in the weak
coupling regime: [Had+99] observed the Brownian motion of the fun- real-time estimation and

feedback coolingdamental mechanical mode of a macroscopic mirror using a weak,
resonant readout beam, while [Tit+99] achieved the same at cryo-
genic temperatures for a microscopic mirror. In principle, these ex-
periments yield real-time state estimates which can be used for feed-
back cooling, as demonstrated by [CHP99]. However, the state esti-
mates achieved in these experiments are in general suboptimal, which
translates into suboptimal cooling performance. The Kalman filter
provides a provably optimal estimate and correspondingly the opti-
mal feedback cooling performance. In fact, Kalman filtering would,
for suitable experimental parameters, allow feedback cooling to the
quantum ground state [HH15]. This requires a measurement in the feedback cooling to the

ground stateregime of strong cooperativity g2 > κγmn̄, which has been achieved
in a couple of recent experiments [Bre+08; Mur+08; PPR13; Wil+15].
The experimental parameters of the early experiments (as well as of
the experiment presented here) are not sufficient for feedback control
at the quantum level, however.

The experiments of the late 1990s estimated only the mechanical
position. [Bri+03] improved on this by simultaneously monitoring
both the position and momentum quadrature of a mirror mode. In advantages of the

Kalman filter...this way they provided a complete reconstruction of the mechanical
phase space of the oscillator. Here again, the Kalman filter represents ...estimation of the

complete system statean important generalization since it allows the complete reconstruc-
tion of not only the mechanical quadratures but all modeled variables
including the optical intracavity quadratures and the position and
momentum of all significantly interacting mechanical modes.

Note that [Bri+03] uses a band-pass filter to suppress the effects
of other mechanical modes. Such ad-hoc methods can work (as long ...optimal and systematic

as the modes are well separated) but they are suboptimal and the re-
sulting estimation errors are usually not quantified. In contrast, the
Kalman filter allows a systematic treatment of multiple mechanical
modes (as well as many other experimental imperfections) and pro-
vides us with a theoretically well-founded estimate of the estimation
error.
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The early estimation experiments were restricted to the weak cou-
pling regime. The plots in Figure 4.1 and Figure 4.2 demonstrate...universal

that the Kalman filter works equally well for both weak and strong
coupling—even though the dynamics and correlations of the optome-
chanical system changes significantly (see Figure 4.4).

Other earlier work has aimed at a full characterization of the me-
chanical state in the frequency-domain: [Pat+06] show (theoretically)
how the noise power spectrum of the position of a mechanical mode
can be inferred from measurements of the phase quadrature of the
reflected field. They do so for arbitrary detuning, which makes the
method more general than the experiments discussed before. But this...time-domain estimation

work does not yield a real-time estimate of the mechanical position.
Hence, in contrast to our approach, it is unsuitable as a basis for real-
time feedback.

In this experiment, we have applied the Kalman filter off-line to
previously recorded data. Hence, while demonstrating the suitability
of the filter for cavity optomechanical systems, we have not imple-
mented the Kalman filter in real-time. But the recursive nature of...real-time

the Kalman filter makes a real-time implementation possible in prin-
ciple. In practice, this requires suitably fast hardware which can read
the measurement signals fast enough and at sufficient precision and
perform the required matrix computations fast enough (much faster
than a mechanical period). The requirements are discussed in more
detail in [Wie+15, Supplemental Material, V.]. For our experimental
parameters, currently available field programmable gate arrays (FP-
GAs) would allow the implementation of real-time estimation (using
the Kalman filter) and feedback.



5
T O WA R D S P U L S E D - C O N T I N U O U S
E N TA N G L E M E N T

5.1 introduction

How can we entangle a mechanical oscillator with laser light? In cavity
optomechanics, entanglement between a mechanical oscillator and
laser light (“light–mechanics entanglement”) can be produced via How to create

light–mechanics
entanglement?

the two-mode squeezing part of the optomechanical interaction [see
Hof15, p. 14], as discussed in Section 2.5.1. In an optomechanical
cavity with mechanical frequency ωm and driven with laser light
at frequency ωl, the two-mode squeezing interaction simultaneously
creates photons (at frequency ωl − ωm) and phonons (at frequency
ωm). This interaction can produce a state with a strong correlation
between photon-number and phonon-number. For the right parame-
ters (sufficiently strong coupling together with sufficiently low deco-
herence), the mechanical oscillator can even become entangled with
the laser light. The dependence of the light-mechanics entanglement
on the optomechanical parameters has been presented systematically
in [Hof15]. For continuously driven optomechanical systems, light-
mechanics entanglement can—due to stability requirements—only be
achieved with red-detuned laser drives, and it requires large coupling
or cooperativity [Hof15, sec. 1.4]. In pulsed protocols, on the other
hand, light–mechanics entanglement can also be created by driving
on the blue side [see Hof15, sec. 2.1, and references therein].

But how can we detect light–mechanics entanglement? The only way How to detect
light–mechanics
entanglement?

of reading out the mechanical position with sufficient precision is to
rely on the cavity-optomechanical interaction once again, this time on
the beam splitter part of the interaction. The beam-splitter interaction
destroys phonons (frequency ωm) to create photons at frequency ωl +

ωm, thereby swapping the state of the mechanical oscillator onto the
cavity light, as discussed in Section 2.5.1. If the mechanical oscillator
was entangled with another system X before, then the cavity light
will become entangled with X as a consequence of the beam-splitter
interaction.

By suitably combining the creation of light–mechanics entangle-
ment (using the two-mode squeezing interaction) with a mechanics-
to-light state swap (using the beam-splitter interaction) we are able to
generate “mechanically mediated” entanglement between different
modes of the returning light field (“light-light entanglement”). De- light-light entanglement

tection of this light-light entanglement can serve as an indirect way
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of detecting light–mechanics entanglement. Two different protocols
which achieve this—one pulsed and one continuous—are described
in the following.

5.2 pulsed entanglement generation and detection

A conceptually simple way of combining entanglement creation with
a state swap was proposed by [Hof+11] and has been realized ex-
perimentally using microwaves by [Pal+13b]. The basic idea of this
protocol is to use distinct pulses, first a blue-detuned pulse, then a
red-detuned pulse, to implement a sequence of entanglement genera-
tion and state swap. Finally, homodyne measurements are performed
on the returning pulses to verify that light-light entanglement has in-
deed been created.

The steps of the pulsed protocol are sketched in the margin:3333 Pulsed entanglement
protocol

 

1. Entanglement generation

a) A blue-detuned pulse is sent onto an optomechanical cav-
ity. The pulse is at frequency ωc +ωm, where ωc is the reso-
nance frequency of the optomechanical cavity and ωm the
frequency of the mechanical mode. The cavity enhances
the (down-)scattering onto the cavity resonance which is
equivalent to a two-mode squeezing interaction acting on
the mechanical mode and the cavity mode.

b) The returning blue pulse contains light scattered onto res-
onance (yellow in the drawing in the margin) via the two-
mode squeezing interaction. This light has become entan-
gled with the mechanical oscillator (green in the drawing).

2. Entanglement swap

a) A red-detuned pulse (at frequency ωc − ωm) is sent onto
the optomechanical cavity. Again, the cavity enhances the
scattering onto the cavity resonance, but this time the scat-
tering is upward in frequency. This means a beam-splitter
interaction is taking place which swaps the mechanical
state onto the second pulse.

b) The returning red pulse contains a resonant sideband (yel-
low in the sketch in the margin) onto which the state of the
mechanical oscillator has been partially swapped. There-
fore (the resonant part of) the returning red pulse is now
entangled with (the resonant part of) the returning blue
pulse and mechanically mediated light-light entanglement
has been created.
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To verify the entanglement, homodyne measurements are performed verification of light-light
entanglementon both pulses. The full covariance matrix of the two-pulse system is

then reconstructed by correlating the measurement outcomes on the
individual pulses. Finally, the entanglement of the two-pulse system
is calculated on the basis of the measured covariance matrix.

The heart of the pulsed protocol for entanglement detection is to essence of pulsed
entanglement detectionmeasure a correlation between down-scattered light (resulting from the

two-mode squeezing part of the interaction) at earlier times and up-
scattered light (from the beam-splitter part) at later times. Under the
right conditions (sufficiently strong interaction, sufficiently low deco-
herence), entanglement can be detected in this way. In the following
section, I will demonstrate that this idea for entanglement detection
is more generally applicable and not restricted to the pulsed protocol
of [Hof+11]. In particular, I will show how—using a very similar cor-
relation measurement between down-scattered light at earlier times
and up-scattered light at later times—we can detect mechanically-
mediated light-light entanglement even for a continuously driven op-
tomechanical system, where the drive can be on resonance or red-
detuned.

The protocol which is presented in the following was first proposed
by Klemens Hammerer (University of Hannover) and Sebastian Hofer
(University of Vienna). The extension of the protocol to the case of
multiple mechanical modes is due to myself. This extension (as well
as other improvements to the original proposal) was developed in col-
laboration with Hofer and Hammerer as well as the people involved
in the experimental effort at the university of Vienna (Witlef Wiec-
zorek, Ramon Moghadas Nia, Claus Gärtner, and Corentin Gut).

5.3 pulsed-continuous entanglement generation and de-
tection

In the remainder of this chapter, I discuss the generation of entangle-
ment via the optomechanical interaction in a continuously driven op-
tomechanical cavity (as sketched in the margin).34 I will demonstrate 34 Experimental setting:

Continuously driven
optomechanical system

that already this simplest possible setup can give rise to entanglement
and to an astonishingly rich correlation structure.

1. We drive an optomechanical cavity continuously with resonant
laser light at frequency ωl = ωc (yellow in the sketch).

2. The optomechanical interaction of the laser light with the me-
chanical device (green in the sketch) leads to the creation of
red and blue sidebands (at ωl − ωm and ωl + ωm, respectively)
inside the cavity. The returning light (mode operator âsig) con-
tains a contribution from the intra-cavity light. Therefore, it also
carries the red and blue sidebands.
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Because we drive continuously and on resonance, both the two-mode
squeezing interaction (down-scattering) and the beam-splitter inter-
action (up-scattering) take place continuously and at the same time.
Therefore,—in sharp contrast to the pulsed protocol discussed abovedistinguishing

contributions from
two-mode squeezing and
beam-splitter interaction

—we cannot anymore distinguish the contributions from the two-
mode squeezing and the beam-splitter interaction based on timing.
But these contributions can of course be distinguished based on fre-
quency: light at ωl−ωm arises from the two-mode squeezing interac-
tion, while light at ωl + ωm arises from the beam-splitter interaction.
The general idea, therefore, is to correlate light at frequencies close to
ωl − ωm at earlier times with light at frequencies close to ωl + ωm at
later times.

5.3.1 Correlations in time and frequency

To correlate the different frequency components (upper and lower
sidebands) in the returning light field âsig during different time inter-
vals, we have to perform a time–frequency analysis of âsig.

To this end, we define the following so-called “mode functions”mode functions

α (t) ≡ Nα · exp (iωmt)× exp (Γt) (for t ≤ 0) , (5.1)

β (t) ≡ Nβ · exp (−iωmt)× exp (−Γt) (for t ≥ 0) . (5.2)

Nα and Nβ are real normalization constants to be determined later.
This leaves two free (real) parameters in the above definitions, ωm and
Γ, which need to be adapted to the experiment we want to analyze.
In the mode functions above, ±ωm parametrizes a complex rotation
and ±Γ an exponential envelope. The basic idea, explained in more
detail later, is to set ωm to the mechanical frequency and Γ to, roughly,
the mechanical decoherence time.

The mode functions (5.1) and (5.2) can be used to implement band-
pass filtering of a complex signal c (τ) around the upper and lower
mechanical sideband. The signal c (τ) we are interested in results, as
explained in more detail later, from homodyne measurements on the
returning light field âsig. Since the local oscillator in the homodyne
measurement is at the drive frequency ωl, the signal c (τ) will consist
of a carrier at frequency 0 and sidebands at at ±ωm. Therefore, c (τ)
is roughly of the following form:

c (τ) = c0 (τ) + c+ (τ) · exp(iωmτ) + c− (τ) · exp(−iωmτ), (5.3)

where c0, c+, and c− are the slowly varying amplitudes of the carrier
and upper and lower sideband, respectively. c0, c+, and c− are as-
sumed to vary slowly on the time-scale of the mechanical frequency
ωm, hence to be approximately constant over one mechanical period
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T = 1/ωm. This implies that, for any integration period [t, t + T] of
duration T, the following holds:∣∣∣∣∫ t+T

t
dτ exp (±iωmτ) · c0,+,− (τ)

∣∣∣∣� ∣∣∣∣∫ t+T

t
dτ c0,+,− (τ)

∣∣∣∣ · (5.4)

If we multiply c (τ) by the mode function α (τ) and integrate, we
obtain (assuming Γ� ωm)

a0 ≡
∫ 0

−∞
α (τ) c(τ)dτ (5.5)

∝
∫ 0

−∞
dτ exp (Γτ) ·

(
c−(τ) + . . . (5.6)

. . . exp (iωmτ) · c0(τ) + exp (2iωmτ) · c+(τ)
)

(5.7)

'
∫ 0

−∞
dτ exp (Γτ) · c−(τ), (5.8)

where the last approximate equality is justified by (5.4). Hence, a0

is (roughly) an exponentially weighted mean of the amplitude of the
lower sideband c−(τ) in the time interval [−1/Γ, 0]. Analogously, in-
tegration of c (τ) with β(τ) yields roughly an exponentially weighted
mean of the amplitude c+ (τ) of the upper sideband. Figure 5.1
sketches the mode functions α (t) and β (t) in the time domain and
their filter effect in frequency.

5.3.1.1 Pulse modes

We can use the mode functions α (t) and β (t) to define new mode
operators ât and b̂t based on our signal field âsig, as follows: canonical transformation

to new light modes

ât ≡
∫ t

−∞
α (τ − t) âsig(τ)dτ, (5.9)

b̂t ≡
∫ +∞

t
β (τ − t) âsig(τ)dτ. (5.10)

This defines light modes which are localized both in time and fre-
quency. In time, they are restricted to times before (after) time t,
respectively. In frequency, they are centered (relative to the carrier
frequency of the light field) at −ωm (+ωm), hence at the lower (up-
per) sideband. This is illustrated in Figure 5.1 (b).

These new modes have similar properties to the modes analyzed
in the pulsed protocol. They are populated predominantly via the candidate light modes for

mechanically mediated
entanglement

two-mode squeezing (beam-splitter) interaction and are adjacent in
time. They can therefore become entangled analogously to the way
two light pulses can become entangled in the pulsed protocol via a
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(a) Mode functions in the time domain.
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(b) Time–frequency representation of filter effect of the mode functions.

Figure 5.1. Mode functions (5.1) and (5.2) in the time-domain (Fig-
ure 5.1a) and their filter effect in time and frequency (Figure 5.1b). For
t < 0, the rotation of the mode function is +ωt which means that, by
integrating a signal with the mode function as defined in (5.9), contri-
butions from the red sideband (frequency ωl − ωm, originating from
the two-mode squeezing interaction) are picked out. For t > 0, the
rotation is in the opposite direction such that contributions from the
blue sideband (frequency ωl + ωm, originating from the beam-splitter
interaction) are picked out. Figure 5.1b illustrates which frequency
components at which time contribute most strongly to the entangling
mode (5.9) and readout mode (5.10) (calculated based on a windowed
Fourier transform).

sequence of light–mechanics entanglement generation and mechan-
ics–light entanglement swap.

If we want to calculate entanglement between the light modes de-
fined by the mode operators ât and b̂t, we need them to obey canoni-
cal commutation relations:canonical commutation

relations [
ât, â†

t

]
=
[
b̂t, b̂†

t

]
= 1, (5.11)[

â(†)t , b̂(†)t

]
= 0. (5.12)
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The commutators in (5.12) vanish trivially since â(†)t and b̂(†)t have no

overlap in time and
[

âsig (τ1) , â†
sig (τ2)

]
= 0, for all τ1 6= τ2. Regarding

(5.11), we have

[
ât, â†

t

]
=

tx

−∞

dτ1 dτ2 α(τ1 − t)α∗(τ2 − t)
[

âsig (τ1) , â†
sig (τ2)

]
︸ ︷︷ ︸

=δ(τ1−τ2)

(5.13)

=

t∫
−∞

dτ |α(τ − t)|2 , (5.14)

[
b̂t, b̂†

t

]
= . . . =

+∞∫
t

dτ |β(τ − t)|2 . (5.15)

Hence, ât and b̂t are legitimate quantum-mechanical mode operators
exactly if the mode functions α (t) and β (t) are normalized. The
normalization constants Nα and Nβ are therefore chosen to be: normalization of the

mode functions

Nα = 1/

√√√√√ t∫
−∞

dτ |α(τ − t)|2, (5.16)

Nβ = 1/

√√√√√ +∞∫
t

dτ |β(τ − t)|2. (5.17)

5.3.1.2 Pulse quadratures

Next, we define amplitude and phase quadratures for these new
modes: amplitude and phase of

entangling and readout
modeQ̂t ≡ Re (ât) , P̂t ≡ Im (ât) , (5.18)

X̂t ≡ Re
(

b̂t

)
, Ŷt ≡ Im

(
b̂t

)
. (5.19)

We collect these quadrature operators into a column vector R̂(t) ≡(
Q̂t, P̂t, X̂t, Ŷt

)T
to define the covariance matrix σ of the two-mode

system consisting of the entangling and the readout mode [see AI07, covariance matrix of
entangling and readout
mode

p. 7827] with matrix entries

σij ≡ 1/2 〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉 〈R̂j〉 . (5.20)

Here, 〈Ô〉 ≡ tr
(
ρsigÔ

)
denotes the quantum-mechanical expectation

value of an operator Ô with respect to the quantum state ρsig of the
output light field âsig.

Note that the covariance matrix (5.20) still implicitly refers to the
“split moment” t which separates the two modes ât and b̂t defined
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above. But if we calculate the matrix elements σij (using the defini-stationarity of the
covariance matrix tions of the pulse modes) we find that they are all sums of integrals

of the form

tx

−∞

dτ1dτ2 α (τ1 − t) α (τ2 − t) 〈âsig (τ1) âsig (τ2)〉 = . . . (5.21)

τ1/2 → τ1/2 + t︸ ︷︷ ︸
=

0x

−∞

dτ1dτ2 α (τ1) α (τ2) 〈âsig (τ1 + t) âsig (τ2 + t)〉

or similar with one or both of the α replaced by α∗, β, or β∗ (with
suitably adjusted integration limits in the case of β or β∗) and one or
both of the âsig replaced by its Hermitian conjugate. Hence, the im-
plicit t-dependence of σij can always be reduced to the t-dependence

of expressions like 〈â(†)sig (τ1 + t) â(†)sig (τ2 + t)〉, where the expectation
value 〈. . .〉 is with respect to the quantum state ρ of the returning
light field. Experimentally, there is only one potential reason for an
explicit time-dependence of these expectation values: the switching
on of the laser at a time t0. But since, in the experiment, we are always
working in a stable regime,35 such switching effects are exponentially35 Note that, for this

reason, the laser drive is
never perfectly resonant in
the experiment but always

at least slightly
red-detuned.

damped out such that, for times t1, t2 � t0 (which are the only times
relevant for our measurement) we have

〈â(†)sig (τ1 + t1) â(†)sig (τ2 + t1)〉 ' 〈â(†)sig (τ1 + t2) â(†)sig (τ2 + t2)〉 . (5.22)

Hence, the covariance matrix of the pulse quadratures (5.20) is, for all
practical purposes, stationary.

Summing up, we can consider ât and b̂t as annihilation operators
for two new light modes, the “entangling mode” and the “readout
mode”, respectively. The entangling mode is restricted to times τ < t
and centered at the lower sideband, while the readout mode is re-
stricted to times τ > t and centered at the upper sideband. These
modes can become entangled via the optomechanical interaction as
will be shown below in Section 5.4. The quantum state of the new
modes ât and b̂t is Gaussian since they are linear combinations of the
operators âsig (τ) at different times and âsig (τ) is in a Gaussian state
at all times. Therefore, the entanglement of the new modes ât and
b̂t is completely determined by their covariance matrix σ. In what
follows, I will explain how we can actually measure the covariance
matrix σ of the pulse modes ât and b̂t in our experiment.

5.3.2 Dual-rail homodyne detection

We can measure the returning light field âsig approximately—with a
known statistical error—using “dual-rail homodyning”. In the liter-
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ature, this is also known as “8 port homodyning”, “8 port junction”,
“4× 4 directional coupler” or, in the microwave domain, as a “dual
balanced receiver” [see Wal87, p. 42].

In the margin, the full experiment including the dual-rail homo-
dyning is sketched:36 36 Pulsed-continuous

entanglement protocol:
dual rail homodyning1. An optomechanical cavity is driven continuously with resonant

laser light (frequency ωl = ωc; yellow in the sketch).

2. The optomechanical interaction of the laser light with the me-
chanical device (green in the sketch) creates red and blue side-
bands sidebands at ωl − ωm and ωl + ωm inside the cavity and
on the returning light (mode operator âsig).

3. We split the returning light on a 50/50 beam splitter. We obtain
two fields âx and ây which are given by(

âx

ây

)
=

1√
2

(
1 1

1 −1

)(
âsig

â0

)
. (5.23)

The mode operator â0 corresponds to the unused port of the
beam splitter, which is in the vacuum state.

4. We continuously measure the amplitude quadrature x̂ ≡
(
âx + â†

x
)

/
√

2

on the field âx and the phase quadrature ŷ ≡
(

ây − â†
y

)
/i
√

2
on ây using homodyne detection and obtain as measurement
results x (t) and y (t), respectively.

By combining the measurement results x and y into c ≡
√

2 (x + iy), estimate of the
complex amplitude of the
signal beam

we obtain an estimate for the full complex field amplitude of the
signal mode âsig. Correspondingly, we can define an operator

ĉ ≡
√

2 (x̂ + iŷ) = . . . =
(

x̂sig + iŷsig
)
+ (x̂0 − iŷ0) , (5.24)

where x̂sig ≡
(

âsig + â†
sig

)
/
√

2 and ŷsig ≡
(

âsig − â†
sig

)
/i
√

2 are the
amplitude and phase quadrature of the returning signal beam, respec-
tively, and x̂0 and ŷ0 analogously for the unused port of the 50/50
beam splitter (vacuum input). We have

ĉ = âsig + â†
0. (5.25)

Hence, ĉ is almost the field operator of the returning signal field but
not exactly. The added vacuum term is crucial: x̂sig and ŷsig are non-
commuting observables and therefore a simultaneous perfect mea-
surement of these observables is ruled out by Heisenberg uncertainty. added measurement noise

consistent with
Heisenberg uncertainty

x̂ and ŷ, on the other hand, can be measured simultaneously and
combined into an estimate for the operator ĉ. The added vacuum op-
erator â†

0 ensures that ĉ only corresponds to âsig up to one unit of shot
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noise in both quadratures. In this way, this “measurement” of âsig

complies with Heisenberg uncertainty. Effectively, we perform a mea-
surement of the Husimi Q function of the returning light field. For
a good discussion of this measurement scheme see [Leo97, pp. 6.1-2],
and references therein.

We can estimate the covariance matrix σ of (5.20) by replacing the
operator âsig (which cannot be measured directly) by c ≡

√
2 (x + iy)

in the calculation of the pulse modes (5.9) and (5.10). Hence, we
calculate:

at ≡
∫ t

−∞
α (τ − t) c(τ)dτ, (5.26)

bt ≡
∫ +∞

t
β (τ − t) c(τ)dτ. (5.27)

From these we calculate, the values of the pulse quadratures via (5.18)
and (5.19). Note that this is not a direct measurement of the pulse
quadratures because, as pointed out above, ĉ only approximates âsig

up to one unit of shot noise per quadrature. Luckily, we are interested
only in the statistics of the pulse quadratures, and—on a statistical
level—we can subtract this additional noise as described by 5.3.3.

5.3.2.1 Connection to the sample covariance matrix

In the experiment, we sample the output of our homodyne detec-
tors at discrete times ti (i = 1 . . . N) with a sampling rate fs =

1/ (ti − ti−1) ' 100 MHz. For the sake of brevity, we are going todiscrete version of
pulsed modes denote quantities like x(ti) which refer to a sampling time ti simply

by xi (analogously for yi, ci, ai, bi). The definition of ai and bi (and its
corresponding quadratures Qi, Pi, Xi, and Yi) now read:

ai ≡ Qi + iPi ≡
i

∑
k=i−M+1

αk−ick

(
=

0

∑
k=−M+1

αkck+i

)
, (5.28)

bi ≡ Xi + iYi ≡
i+M

∑
k=i+1

βk−ick

(
=

M

∑
k=1

βkck+i

)
, (5.29)

where

αk ∝ exp (iωm ∆t k)× exp (Γ ∆t k) , (k = −M + 1, . . . , 0), (5.30)

βk ∝ exp (−iωm ∆t k)× exp (−Γ ∆t k) , (k = 1, . . . , M), (5.31)

∆t ≡ 1/ fs = ti − ti−1. (5.32)
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(time)

Figure 5.2. Illustration of the selection of pulse pairs from the measured
time traces. The first M samples of the x- and y-trace are selected to
calculate the entangling mode for the first pulse pair. The next M
samples (M + 1 to 2M) are used to calculate the readout mode for the
first pulse pair. Samples 2M + 1 to 3M and 3M + 1 to 4M are the input
for the entangling and readout mode, respectively, of the second pulse
pair, and so on.

In (5.28) and (5.29), we have restricted the summation per pulse to
M samples before and after sample i, respectively. The number of
samples per pulse M should be chosen large enough to satisfy

|α0|
!� |α−M+1| , |β1|

!� |βM| . (5.33)

Condition (5.33) ensures that multiplication with the mode function
still acts approximately like a bandpass filter of width Γ around −ωm

or +ωm as previously discussed.
The normalization condition for the mode functions then reads

0

∑
k=−M+1

|αk|2 !
= 1,

M

∑
k=1
|βk|2 !

= 1. (5.34)

If we restrict the summation to M samples per pulse, we can ex-
tract bN/2Mc non-overlapping pulse pairs from a trace containing N
samples:37 The first pulse pair extends from samples 1 to M (entan- 37 bxc denotes the

floor of x.gling pulse) and M + 1 to 2M (readout pulse), the second pulse pair
extends from samples 2M + 1 to 3M (entangling pulse) and from
3M + 1 to 4M (readout pulse), and so on, as sketched in Figure 5.2.

For each of these pulse pairs, we obtain a vector of four quadratures
Ri ≡ (Qi, Pi, Xi, Yi)

T where the index i now runs over all pulse pairs,
i.e. i = 1, . . . , bN/2Mc. This ensemble {Ri|i = 1, . . . , bN/2Mc} of
pulse pairs can be used to calculate a sample covariance matrix σ̃ as
follows:

σ̃ ≡


Q2

i QiPi QiXi QiYi

QiPi P2
i PiXi PiYi

QiXi PiXi X2
i XiYi

QiYi PiYi XiYi Y2
i

−


Qi
2 Qi · Pi · · ·

Qi · Pi
. . .

...

 ,

(5.35)
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where O ≡ 1
bN/2Mc−1 ∑b

N/2Mc
i=1 Oi denotes the sample mean of pulse

quadrature O over all pulse pairs. Here and in what follows, I use the
tilde (as in σ̃) to denote measured quantities, in this case the sample
covariance matrix—in contrast to the ensemble covariance matrix σ

defined by (5.20).
Assuming Gaussianity and stationarity of the underlying process,

(5.35) is the best estimator of the quantum-mechanical covariance ma-
trix (5.20). We will therefore calculate the entanglement of the output
light field based on (5.35). We use the logarithmic negativity as a
measure of entanglement because it can be calculated easily from the
covariance matrix [see AI07, p. 7842]. Note that we use a slightly
modified definition of the logarithmic negativity; see Section C.1 for
details.

Note also that (5.35) is the optimal estimator of the covariance ma-
trix of the underlying random process only if the samples (pulse pairs)
are statistically independent. It turns out that, for a resonantly driveneffect of long mechanical

coherence times system, this assumption is not met: There are strong correlations be-
tween different pulse pairs which persist for very long times. This
is because the time scale of these correlations is set by the coherence
time (i.e. the mechanical quality factor) of the mechanical oscillator
which can be extremely high. In the experiment, however, we always
operate with a slightly red-detuned laser drive. This leads to optical
damping of the mechanical oscillator and reduces its coherence time
drastically. The coherence time is actually reduced so strongly that
the autocorrelation of the pulse-pairs becomes essentially zero in the
experiment; see Section 5.9.2 for a discussion of this point. There-
fore, we are justified in treating each pulse pair like an independent
random draw from the underlying distribution when analyzing our
experimental data.

5.3.3 Post-processing steps

Once we have calculated σ̃ according to (5.35) using (5.28) and (5.29),
we need to apply some post-processing steps in order to calibrate and
correct for known systematic errors:

1. Subtract contributions due to the detector dark noise.

2. Correct signal and shot noise data for sub-optimal quantum ef-
ficiency and homodyning visibility of our detection setup.

3. Calibrate our data to shot noise units (the raw data recorded in
our experiment is in units of Volt).

4. Subtract the extra shot noise contribution due to the dual-rail
homodyning setup.
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Figure 5.3. Sequence of post-processing steps. σ̃ is the covariance
matrix of pulsed quadratures defined by (5.35), σ̃(0) and σ̃(dark) are
the covariance matrices calculated on the basis of shot noise and dark
noise measurements, respectively. η is the detection efficiency, ν is the
homodyning visibility. C denotes a calibration factor (see main text for
details). Note that in each correction step, the result of the previous
correction is meant to be used as input. Hence, σ → f (σ) → g (σ)
means σ → g ( f (σ)), i.e. apply f to σ, then g to f (σ).

These steps are sketched in Figure 5.3 and will be explained in more
detail below.

Note that correcting our measurement results for detector dark
noise, sub-unit quantum efficiency and sub-unit homodyning visibil-
ity (steps 1 and 2 above) is justified since these imperfections are only
a feature of our measurement of the state, not of its generation. The
same is true for the subtraction of the extra shot noise contribution
due to the dual-rail homodyning (step 4).

1. Dark noise subtraction

The measurement output from our homodyne detectors contains—on
top of the signal—a contribution due to the dark noise of our detec-
tors. Hence, the signal we measure can be written as

x (t) + iy (t) = x(ideal) (t) + iy(ideal) (t) + x(dark) (t) + iy(dark) (t) ,
(5.36)

where x(ideal) and y(ideal) are the signals we would have measured in
the absence of dark noise and x(dark) and y(dark) are due to detector
dark noise.

Since the dark noise signals are statistically independent from the
ideal signals, the sample covariance matrix σ̃ calculated on the basis
of the noisy signals is given by

σ̃ = σ̃(ideal) + σ̃(dark), (5.37)

where the dark noise contribution σ̃(dark) is simply the result of our
evaluation procedure applied to dark noise signals.

Hence, we can proceed as follows:
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1. We measure dark noise traces x(dark) (t) and y(dark) (t) by record-
ing the output from the x- and y-homodyne detector, respec-
tively, with all light (local oscillator as well as signal) blocked.

2. We perform the data evaluation procedure (calculation of pulsed
quadratures, calculation of the sample covariance matrix of the
pulsed quadratures) using the measured dark noise traces and
obtain the matrix σ̃(dark).

3. We subtract σ̃(dark) from the sample covariance matrix σ̃ for the
measured signal to obtain the sample covariance matrix σ̃(ideal)

for the noise-free signal x(ideal) (t) + iy(ideal) (t).

4. Finally, we also need to subtract σ̃(dark) from the covariance ma-
trix σ̃(0) calculated for pure shot noise input. The matrix σ̃(0)

is needed for the calibration of the measurement data in shot
noise units as explained below.

2a. Detector efficiency

Our photodetectors have a quantum efficiency η ' 95 %. This means
that, on average, around 95 % of the arriving photons create a pho-
toelectron, while 5 % of the arriving photons are effectively lost. The
effect is the same as if the optical power was attenuated by 5 %. Since
the variance of a classical signal scales with the square of the optical
power, while the variance due to quantum fluctuations scales only
linearly with power, the effect of inefficient detection is different for
the shot noise and the signal measurements. To correct for inefficient
detection, the shot noise covariance matrix σ̃(0) must be multiplied
by 1/η, while the signal covariance matrix σ̃ must be multiplied by
1/η2. However, since the measured signal also contains a shot noise
contribution, the full correction for the signal is actually a little bit
more complex. It will be given below together with the correction for
sub-unit homodyne visibility. The required corrections are derived in
the appendix, in Section C.5.

2b. Homodyning visibility

The visibility ν of the interference between local oscillator and the
signal mode is usually limited to ν ' 90 %, due to imperfect spatial
mode-matching. We measure the homodyning visibility ν as follows:
We set signal and local oscillator to the same optical power and scan
the relative phase between local oscillator and signal using a PZT-
mounted mirror in the local oscillator path. The DC output of the
photodetector will show oscillations resulting from the interference
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of signal and local oscillator. Defining Vmin and Vmax as the minimum
and maximum of the interference signal, we calculate the visibility as

ν =
Vmax −Vmin

Vmax + Vmin
. (5.38)

The effect of sub-unit visibility on our measurement is as follows:
In the shot noise measurement, only the local oscillator beam is used.
Hence, clearly, the reduced interference visibility does not make a dif-
ference in the shot noise measurement. Measurements with a signal
beam, however, are affected by the reduced visibility. The effect is the
same as if the amplitude of the local oscillator field were reduced by
a factor η. This reduces the measured signal variance by η2.

The full correction for both detector inefficiency and sub-unit ho-
modyning visibility is given by (see Section C.5 for the calculation): combined correction for

visibility and efficiency

σ̃ → σ̃ − (1− ην²)σ̃(0)

η2ν2 , (5.39)

σ̃(0) → σ̃(0)

η
. (5.40)

Here, σ̃(0) and σ̃ refer to the measured covariance matrices of shot
noise and signal, respectively. Note that the term σ̃(0) on the right-
hand side of (5.39) refers to the measured shot noise matrix before
the correction described by (5.40).

3. Shot noise calibration

Our raw measurement data is in units of Volt. But to calculate en-
tanglement based on the covariance matrix σ̃ of pulsed quadratures,
we need our data to be expressed in shot noise units, i.e. in units in
which the variance of shot noise is 1/2. This can be achieved by calcu-
lating the covariance matrix σ̃(0) of pulsed quadratures for shot noise
inputs, finding a scale factor C such that the resulting matrix has a
mean diagonal value of 1/2 and applying the same scale factor to the
signal data. Hence, we proceed as follows:

1. We block the signal to record shot noise traces x(0) (t) and y(0) (t)
with the x- and y-homodyne detector, respectively.

2. We perform the data evaluation (calculation of pulsed quadra-
tures (5.28) and (5.29) and their covariance matrix (5.35)) based
on the shot noise traces x(0) (t) and y(0) (t) to obtain the shot
noise covariance matrix σ̃(0).

3. We calculate the calibration factor C ≡ 2 · ∑4
i=1 σ̃(0)

ii from the
shot noise matrix σ̃(0) (hence, the calibration factor is twice the
mean value of the diagonal).
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4. Finally, we redefine the covariance matrices σ̃ and σ̃(0) (for sig-
nal and shot noise, respectively) as follows

σ̃ → σ̃/C, (5.41)

σ̃(0) → σ̃(0)/C. (5.42)

4. Added noise due to dual-rail homodyning

There is one further subtlety: What we want to characterize is the
entanglement of the light field âsig returning from the cavity.38 What38 Recall the setup:

we actually characterize in our dual rail homodyning setup, however,
are the two light fields âx and ây which result from mixing the signal
field âsig on a 50:50 beam splitter with a mode â0 in the vacuum state:(

âx

ây

)
=

1√
2

(
1 1

1 −1

)(
âsig

â0

)
. (5.43)

As explained above, our post-processing procedure amounts to esti-
mating the operator

ĉ ≡
√

2 (x̂ + iŷ) = . . . = âsig + â†
0, (5.44)

where x̂ and ŷ are the amplitude and phase quadrature of the fields
âx and ây , respectively. Hence, in addition to âsig, we also measure
an extra unit of shot noise â†

0 which can be attributed to the splitting
of the signal on the beam splitter.

On the level of the pulse modes, this additional shot noise contri-
bution implies

ât ≡
∫ t

−∞
α (τ − t) ĉ(τ)dτ (5.45)

=
∫ t

−∞
α (τ − t) âsig (τ)dτ +

∫ t

−∞
α (τ − t) â†

0 (τ)dτ, (5.46)

b̂t ≡
∫ +∞

t
β (τ − t) ĉ(τ)dτ (5.47)

=
∫ +∞

t
β (τ − t) âsig (τ)dτ +

∫ +∞

t
β (τ − t) â†

0 (τ)dτ. (5.48)

Recall that the pulse quadratures Q̂t, P̂t, X̂t, Ŷt are defined as the real
and imaginary parts of the mode operators ât and b̂t:

Q̂t ≡ Re (ât) ,P̂t ≡ Im (ât) , (5.49)

X̂t ≡ Re
(

b̂t

)
,Ŷt ≡ Im

(
b̂t

)
. (5.50)
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Analogously, we define pulse quadratures Q̂(sig)
t , . . ., and Q̂(0)

t , . . . based
only on the fields âsig and â†

0, respectively:

Q̂(sig)
t ≡ Re

(∫ t

−∞
α (τ − t) âsig (τ)dτ

)
, . . . (5.51)

Q̂(0)
t ≡ Re

(∫ t

−∞
α (τ − t) â†

0 (τ)dτ

)
, . . . (5.52)

The vector R̂t ≡ (q̂t, p̂t, x̂t, ŷt)
T of (actually measured) pulse quadra-

tures can then be written as

Rt = R(sig)
t +R

(0)
t, where (5.53)

R̂
(sig)
t ≡

(
q̂(sig)

t , p̂(sig)
t , x̂(sig)

t , ŷ(sig)
t

)T
(5.54)

R̂
(0)
t ≡

(
q̂(0)

t ,− p̂(0)
t , x̂(0)

t ,−ŷ(0)
t

)T
. (5.55)

We can define covariance matrices σ̃(sig) and σ̃(0) for both R̂(sig) and
R̂(0), respectively. Since the contributions R̂(0) due to the added shot
noise are statistically uncorrelated with the contributions R̂(sig) due to
the signal light field, the covariance matrix σ̃ of the measured pulse
quadratures is simply a sum of the covariance matrix σ̃(sig) due to the
signal light field âsig alone and the covariance matrix σ̃(0) resulting
from the added shot noise â†

0:

σ̃ = σ̃(sig) + σ̃(0). (5.56)

Note that the expectation value for σ̃(0) is

E
[
σ̃(0)

]
= E

[(
q̂(0)

t ,− p̂(0)
t , x̂(0)

t ,−ŷ(0)
t

)T (
q̂(0)

t ,− p̂(0)
t , x̂(0)

t ,−ŷ(0)
t

)]
(5.57)

= E

[(
q̂(0)

t , p̂(0)
t , x̂(0)

t , ŷ(0)
t

)T (
q̂(0)

t , p̂(0)
t , x̂(0)

t , ŷ(0)
t

)]
, (5.58)

since there are no correlations between different quadratures for shot
noise. Hence, the relative sign between the quadratures q̂(0)

t , x̂(0)
t and

p̂(0)
t , ŷ(0)

t does not matter.
As described above, we can measure the shot noise contribution

σ̃(0) simply by performing the data evaluation for shot noise mea- measuring σ̃(0)

surements, i.e. measurements with only the local oscillator light but
no signal light. Then we can subtract σ̃(0) from σ̃ to obtain

σ̃(sig) ≡ σ̃ − σ̃(0). (5.59)

This final covariance matrix σ̃(sig) is our best estimate for the quan-
tum state of the entangling and readout mode in the returning light
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field. We will therefore use σ̃(sig) to asses the light-light entanglement
created via the optomechanical interaction.

We use the logarithmic negativity as an entanglement measure be-logarithmic negativity as
entanglement measure cause it can be calculated easily on the basis of the covariance matrix.

Note, that we use a slightly modified definition of the logarithmic
negativity. Usually, separable states are assigned a logarithmic nega-
tivity of zero. In this thesis, however, we extend the definition of the
logarithmic negativity and assign negative values to separable states
such that negative values close to zero correspond to states which
are (in some sense) close to being entangled while negative values far
from zero correspond to states which are far from being entangled.
See Section C.1 for more details.

5.4 single-mode simulations

To check that mechanically mediated light–light entanglement can
indeed be detected by the measurement protocol described above,
I performed simulations of the experiment and apply our entangle-
ment detection protocol to the simulated measurement data. I start
with the simplest case: simulations with a single mechanical mode
and neglecting (for now) classical laser noise.

5.4.1 Entanglement as a function of pulse width Γ

In the simulations presented below, I fix the optomechanical parame-
ters g, κ, ωm, Q, and T. For the evaluation, I vary the pulse width Γ in
the definition of the pulse modes (5.1) and (5.2), but keep the central
frequency of the pulses fixed at ∓ωm.

Figure 5.4 demonstrates that, for the right set of optomechanical
parameters, it is indeed possible to detect entanglement using our
protocol. It also shows that entanglement can only be detected if the
pulse width Γ (in the frequency domain) is chosen appropriately. Ifoptimal pulse width

the pulse duration is too long (hence pulse width too narrow in the
frequency domain) mechanical decoherence destroys the correlations
between the pulses. Therefore the lower limit for the pulse width is
roughly given by n̄γ (2π × 21 kHz in this example). If the pulses are
too short, on the other hand, there is not enough time for correlations
to build up. The critical time is given by κ/g2, which is the inverse of
the effective interaction rate (in the adiabatic approximation). There-
fore, the upper limit for the pulse width is roughly given by g2/κ

(2π × 240 kHz in this example).
Another important insight from Figure 5.4 is that the entanglementdependence on Q/T

created in this protocol does not depend on the mechanical quality
factor Q or the temperature T independently but only via the ratio
T/Q. This is demonstrated by the nearly perfect coincidence of the
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Figure 5.4. Parameters:
ωm = 2π × 1 MHz,
κ ' 2.73×ωm,
g0 = 65× 10−6 ×ωm,
g ' 0.27×ωm,
Q = 1× 104 (1× 106),
T = 50 mK (5 K),
Pin = 20 µW,
C ' 1.26,
without optical noise.

Logarithmic negativity EN versus pulse width Γ for single-
mode simulations. We observe entanglement for 40 kHz < Γ <
163 kHz (dashed vertical lines). These limits are tighter than but on
the same order as the mechanical decoherence rate n̄γ ' 2π × 21 kHz
(red, vertical line) and g2/κ ' 0.24×ωm = 2π× 240 kHz (blue vertical
line), respectively. The two coinciding entanglement curves (thick blue
and thin yellow line) correspond to simulations with different mechani-
cal quality factors Q = 1× 106, Q = 1× 104 and temperatures T = 5 K,
T = 50 mK, respectively, but constant thermal cooperativity C ' 1.26
and constant mechanical decoherence rate n̄γ ' 2π × 21 kHz.

curves EN (Γ) for two simulations which differ by two orders of mag-
nitude in Q and T but have identical T/Q. The physical reason for
this coincidence is that the quality factor and the temperature only in-
fluence the entanglement via the mechanical decoherence rate which
is (for kBT � h̄ωm) given by

n̄γ ' kBT
h̄ωm

× ωm

Q
=

kBT
h̄Q

∝
T
Q

. (5.60)

Note that the values of the optomechanical parameters in the sim-
ulations are generally chosen such that they agree with measured choice of parameters for

simulationsor expected values for our experimental setup (with the exception
of T = 50 mK in Figure 5.4 which was chosen to illustrate that EN
depends on n̄γ but not n̄ or γ individually).

5.4.2 Systematic exploration of parameter-space

To explore the feasibility of the proposed protocol for entanglement
generation and detection, I systematically studied the dependence of
the expected entanglement on key parameters such as the linearized
optomechanical coupling g, the mechanical frequency ωm, and the
mechanical quality factor Q. The coupling g is proportional to the
square root of the intracavity power and can therefore be increased
easily by increasing the optical input power. The mechanical fre-
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quency ωm can be varied by changing the dimensions of the me-
chanical device using microfabrication. For MIM-cavities, the pos-
sible range for the fundamental mechanical frequency extends from
some hundred kHz to a few MHz (limited at the upper end by the
requirement that the lateral dimensions of the membrane should be
larger than the optical spot size). The mechanical quality factor Q
is much harder to control but improving and controlling it is a fo-
cus of much recent work on microfabricated optomechanical devices
[Ver+06; VCP08; Cha+14; Col+14; NMG16; Rei+16].

In Figure 5.5, I present results from simulations regarding the gen-
erated entanglement as a function of the optomechanical coupling g
and mechanical quality factor Q within experimentally accessible pa-
rameter ranges. The mechanical frequency was set to ωm = 2π ×
920 kHz which can be easily achieved with high tensile stress SiN
membranes (lateral dimensions lx = ly ' 430 µm, tensile stress σ '
1 GPa, density ρ ' 3.18× 103 kg/m3). I repeated the same simula-choice of mechanical

frequency tions with a mechanical frequency of ωm = 2π × 1.5 MHz (lateral
dimensions lx = ly ' 265 µm). The results are so similar that I
do not include them here. I conclude that for the proposed exper-
iment, membranes with fundamental mechanical frequencies in the
range 900 kHz to 1.5 MHz should all work and yield quite similar re-
sults. Frequencies much higher than 1.5 MHz are excluded because it
would require shrinking the membrane close to or even below the
waist of the cavity mode which would lead to significant optical
losses. Frequencies much lower than 900 kHz are also problematic
because of the laser noise which rises strongly with decreasing fre-
quency.

The optomechanical bare coupling is fixed at g0 = 2π × 65 Hz,
which is the optimal value for the coupling of the fundamental me-optomechanical

parameters chanical mode in our MIM-cavity geometry (recall that the coupling
g0 depends on the exact position of the membrane along the cavity
axis). The cavity parameters are set to the values we achieve in ourcavity parameters

current setup, namely κin = 2π × 1.7 MHz, κout = 2π × 810 kHz. The
term κout accounts for losses due to transmission through the cavity
end mirror but also for losses due to scatter and absorption inside the
cavity. Optical losses in between the optomechanical cavity and theoptical losses

detection setup (on the order of 15 to 20 %) are not taken into account
in the simulations. These losses will lower the detected entanglement
values but will not make the entanglement disappear. Furthermore,
we can in principle easily correct for these losses in the data evalu-
ation to obtain the entanglement of the light field directly after the
optomechanical cavity. The simulations also do not account for de-
tector efficiency (roughly 95 %) and homodyning visibility (roughly
90 %). In the experiment we correct for the latter two effects; see
Section 5.3.3 and Section C.5 for a discussion of this correction. Thetemperature
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temperature is set to 5 K in the following simulations, which is readily
achievable in a liquid helium flow cryostat.

5.4.2.1 Simulations without optical noise

Figure 5.5a presents the results for simulations without optical noise.
To generate this plot (and the following one), 45 different simulations
were run with all combinations of optical input powers Pin from the
set {2.5, 5, 7.5, 10, 15, 20, 30, 40, 50}µW (corresponding to couplings g
in the range [0.1, . . . , 0.48] × ωm) and mechanical quality factors Q
from the set

{
5× 105, 5× 105.5, 5× 106, 5× 106.5, 5× 107}; these sim-

ulated parameter combinations are marked with a cross in the plot.
For each of these simulations, the logarithmic negativity EN was op-
timized with respect to the pulse width Γ.39 The resulting optimal 39 The pulse widths Γ for

which the optimal amount
of entanglement is
extracted are plotted in the
appendix (Section C.6), in
Figure C.7a.

entanglement values were then interpolated linearly to other values
of g and Q to generate the contour plots below.

The linearized optical coupling is proportional to
√

Pin and varies
in the range g = [0.1, . . . , 0.48]× ωm in these simulations. Therefore,
all simulations satisfy g < ωm and g < κ. We observe that, in this increase with g and Q
regime, entanglement increases with both coupling strength g as well
as mechanical quality factor Q. Only for large mechanical quality fac-
tors and for large coupling, a decrease of entanglement for a further
increase in coupling is observed.

The cooperativity C ≡ g2/(κn̄γ) varies between C ' 1.9× 10−2 for
g ' 0.1 × ωm and Q = 5× 105 (lower left corner) and C ' 37 for
g ' 0.48× ωm and Q = 5× 107 (upper right corner). Two lines of dependence on

cooperativityequal cooperativity at C = 1 (red dashed) and C = 0.25 (blue dashed)
are drawn. For a large part of the parameter space, curves of equal
entanglement coincide roughly with lines of equal cooperativity. En-
tanglement appears roughly for C & 0.25.

5.4.2.2 Simulations including optical noise

Figure 5.5b shows results of simulations for the same parameters as
in Figure 5.5a but including optical noise—phase noise as well as
amplitude noise—as measured for our setup.40 Note that the noise 40 The pulse widths Γ for

which the optimal amount
of entanglement is
extracted are again shown
in the appendix
(Section C.6), in
Figure C.7b.

model need not be perfect for reliable simulations. This is demon-
strated in Section C.9 where the effects of different noise models on
the entanglement are compared.

As before, the entanglement increases with the mechanical quality
factor. The main difference to the noise-free case (Figure 5.5a) is that,
in the presence of noise, lines of equal entanglement do not coincide
anymore with lines of equal cooperativity. Instead, for all quality fac-
tors considered here, entanglement decreases again once the coupling
becomes too large, i.e. once the optical power becomes too large. This
is due to the fact that the effects of classical laser noise scale quadrat-
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(a) Optimal logarithmic negativity EN
(
Γopt

)
versus quality factor Q and

optomechanical coupling g for single-mode simulations without optical
noise.

(b) Optimal logarithmic negativity EN
(
Γopt

)
versus quality factor Q

and optomechanical coupling g for single-mode simulations with opti-
cal noise as measured for our setup.

Figure 5.5.Parameters:
ωm = 2π × 0.92 MHz,

κ ' 2.73×ωm,
g0 = 65× 10−6 ×ωm,

T = 5 K.

Optimal logarithmic negativity EN
(
Γopt

)
versus quality fac-

tor Q and optomechanical coupling g for single-mode simulations with
optical noise (Figure 5.5b) and without it (Figure 5.5a). Crosses mark
the parameters which were simulated. For these parameters, entangle-
ment was evaluated for different pulse widths Γ and then optimized
with respect to Γ. In between the simulated parameters, the optimized
entanglement values were interpolated linearly. Lines of equal cooper-
ativity C = 1 (C = 0.25) are marked with a red (blue) dashed line.
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ically with the optical power and thus become more detrimental for
higher optical powers.

5.5 multimode effects

So far, we assumed that we are dealing with a single mechanical
mode. Unfortunately, this could not be further from the truth. On
the contrary, in a MIM cavity, there are a large number of mem-
brane mechanical modes which interact with comparable coupling
strengths with the optical cavity mode. Hence, MIM cavities are
genuinely multimode optomechanical systems. This is in sharp con-
trast to the electromechanical membranes used in the experiments of
[Pal+13a; Pal+13b]. In the electro-mechanical case, the coupling is electromechanical

membrane setups are
effectively single-mode

capacitive and therefore depends on the average displacement over
the full membrane surface. Therefore, in electro-mechanical mem-
brane setups, the fundamental mechanical mode couples much more
strongly than all other modes, since it is the only mode which has a
large displacement when averaged over the full membrane surface.

In a MIM-cavity, on the other hand, we are probing the membrane
displacement in only a very small region on the membrane surface. optomechanical membrane

setups are multi-modeBut, for any small region on the membrane surface, there are many
membrane modes with non-negligible average displacement over that
region. Hence, there are many membrane modes with comparable
optomechanical coupling in a MIM-cavity. The experimentally mea-
sured membrane spectrum in Figure 3.14 illustrates this point quite
drastically. In the frequency band from DC to 2.5 MHz, there are
roughly 50 mechanical modes and most of them are clearly observ-
able in the spectrum of the cavity light.

The important question is: Does the multimode character of our
MIM-cavity matter for our entanglement experiment? Below, we will
answer this question affirmatively using multimode simulations. But
the following simple back-of-the-envelope estimate also shows that
the multimode character of the MIM-cavity could make a big differ-
ence for the proposed experiment.

5.5.1 Relevant frequency scale for mode separation

The relevant frequency scale regarding the separation of mechanical
modes in our entanglement detection protocol is given by the op-
timal width Γopt of our pulse mode functions (5.1), (5.2). A pulse
mode with central frequency ωm/2π and width Γ/2π defines a win-
dow [ωm − Γ, ωm + Γ]/2π in frequency space. Signals at frequencies
within this window contribute strongly to the pulse quadratures ex-
tracted by this pulse mode function. Signals at frequencies outside
this window contribute only weakly. Therefore, we expect that the
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presence of higher mechanical modes matters for our experiment if
the separation of mechanical modes ∆ωm is smaller than or similar to
the typical optimal width Γopt of pulse mode functions in frequency
space. Note however that, since the pulse shape is exponential in time,
we are dealing with a Lorentzian in frequency space which does not
have a clear cut-off but rolls off with 1/Ω2 towards high sideband fre-
quencies. Therefore, it is impossible to conclude solely on the basis of
the pulse shape that signals outside this frequency window will not
prevent entanglement detection.

Recall that the optimal pulse width Γopt is restricted by n̄γ �
Γopt � g2/κ and that, in simulations with realistic parameters (see
e.g. Figure 5.4), Γopt turned out to be on the order of 0.1× ωm. This
optimal pulse width is on the same order of magnitude as the typ-
ical separation of mechanical mode frequencies for our membranes:
For square membranes (such as the 1 mm× 1 mm Norcada SiN mem-
brane whose spectrum is shown in Figure 3.14), the expected mean
separation between neighboring modes in the range from DC to 2.5 MHz
is 0.1 × ωm (0.2 × ωm if we exclude quasi-degenerate modes). The
difference between the fundamental mechanical mode and the next
mechanical mode is quite a bit larger than that (0.58× ωm) but still
on the same order of magnitude as the optimal pulse width. Hence,
the single-mode assumption is not well satisfied in our system in the
context of the pulsed-continuous entanglement experiment (the con-
clusion would actually be no different if we employed actual pulses
as in the original protocol of [Hof+11]).

Hence, if we want to detect entanglement, we cannot analyze only
the signal caused by the fundamental mechanical mode. For better or
worse, the closest higher-order mechanical modes will also contribute
to the signal we analyze (i.e. the pulse quadratures). This amounts to
a form of additional noise which can mask the entanglement.

Below, I demonstrate using simulations that higher mechanical modes
can indeed prevent the detection of entanglement (see Figure 5.6). All
is not lost, however. We can generalize our protocol such that the
contributions of higher mechanical modes are properly taken into
account, as explained in Section 5.6. The contributions of higher me-
chanical modes are then seen to be not random noise, but part of
a larger correlation structure. With this extended protocol, we are
indeed able to detect entanglement in the output light even in the
presence of multiple closely spaced and strongly interacting mechan-
ical modes, as demonstrated in Section 5.7.1 (see, in particular, Fig-
ure 5.6).
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5.6 multimode protocol

The guiding idea for a multimode generalization of our entanglement
detection protocol is as follows. We want to extract simultaneously
the contribution of several mechanical modes to the output light field.
To this end we define, for each mechanical mode i, mode functions in
analogy to Section 5.3.1: mode functions

α̃(i)(t) ≡ exp (iωit)× exp (Γit) (for t ≤ 0) , (5.61)

β̃(i)(t) ≡ exp (−iωit)× exp (−Γit) (for t ≥ 0) . (5.62)

The mode function α̃(i) (β̃(i)) with label i is meant to extract the lower
(upper) sideband due to the i-th mechanical mode during the first
(second) pulse. Therefore, the central frequency of the mode func- choice of parameters

tions is chosen to be ±ωi, respectively, where ωi is the frequency of
the i-th mechanical mode. The pulse widths Γi (=inverse decay time /
width in frequency space) of the mode functions must be chosen care-
fully to allow detection of entanglement. In principle, the Γi could be
chosen differently for each mechanical mode to optimize the detected
amount of entanglement. In practice, however, we cannot scan each
of the Γi individually since the data evaluation procedure is (com-
putationally) quite time-intensive. For this reason, in all evaluations
presented below, all Γi are set to the same value and scanned collec-
tively (unless otherwise noted).

Next, we have to ensure that the mode functions (5.61) and (5.62)
are mutually orthonormal. To this end, we numerically orthonormal- orthonormalization

ize (using either modified Gram-Schmidt or Householder reflections)
the set of mode functions

{
α̃(i)(t), β̃(i)(t)

}
i=1...m

in order to obtain a

new orthonormal set of mode functions
{

α(i)(t), β(i)(t)
}

i=1...m
which

satisfies ∫ 0

−∞
α(i)(t) α(j)∗(t)dt = δij, (5.63)∫ +∞

0
β(i)(t) β(j)∗(t)dt = δij. (5.64)

Note that any mode function α(i)(t) is automatically orthogonal to
any mode function β(j)(t) since they have no overlap in time. In Sec-
tion C.2, an example of a set of mode functions used for multi-mode
evaluations is given.
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These mode functions allow us to define the following mode oper-
ators:

â(i)
t ≡

∫ t

−∞
α(i) (τ − t) âsig(τ)dτ, (5.65)

b̂(i)
t ≡

∫ +∞

t
β(i) (τ − t) âsig(τ)dτ. (5.66)

The operators â(i)t and b̂(i)t define light modes, which we refer to as
“pulse modes”. These modes allow us to describe the quantum statepulse modes

of the output light field before and after time t, respectively. We
call the set of modes

{
α(i)(t)

}
i=1...m

the “entangling pulse” and the

modes
{

β(i)(t)
}

i=1...m
the “readout pulse”.

Because the mode functions
{

α(i)(t), β(i)(t)
}

i=1...m
are mutually

orthonormal, the multiplication and integration of (5.65) and (5.66)
amounts to a unitary transformation from the operators

{
âsig (t)

}
t∈R

to the operators
{

â(i)t , b̂(i)t

}
i=1...m

. Hence, the resulting operators â(i)t

and b̂(i)t are legitimate quantum mode operators in the sense that they
satisfy the same canonical commutation relations as the operators{

âsig (t)
}

t∈R
. As in the single-mode case, we proceed by defining

corresponding quadrature operators, which we will also refer to as
“pulse quadratures”:pulse quadratures

Q̂(i)
t ≡ Re

(
â(i)

t

)
, P̂(i)

t ≡ Im
(

â(i)
t

)
, (5.67)

X̂(i)
t ≡ Re

(
b̂(i)

t

)
, Ŷ(i)

t ≡ Im
(

b̂(i)
t

)
. (5.68)

How can we measure these pulse quadratures? In complete anal-
ogy to the single-mode case, we substitute our measurement c(τ) ≡application to

experimental data
√

2 (x (τ) + iy (τ)) for âsig (τ) in (5.65) and (5.66) and use the results
to compute measurement results for the pulse quadratures (5.67) and
(5.68). Recall that x and y are the measurement signals from the
amplitude and phase homodyne detection, respectively, and c(τ) ≡√

2 (x (τ) + iy (τ)) is our estimate for the complex field state of the
light mode âsig (τ) returning from the optomechanical cavity.

To gather statistics regarding the pulse quadratures, we repeat this
process by cutting our measurement trace c(τ) into N non-overlapping
pieces and calculating the pulse quadratures for each of these pieces
as described in Section 5.3.2.1. In this way, we can collect an ensemblecovariance matrix of

pulse quadratures of pulse quadratures
{

Q(i)
t, P(i)

t, X(i)
t, Y(i)

t
} i=1...m

t=t1,...,tN
measured for N

different times t. We calculate the covariance matrix σ̃ for this ensem-
ble of measured pulse quadratures, in order to evaluate the entangle-
ment between the pulse modes

{
â(i)t )

}
i=1...m

and
{

b̂(i)t

}
i=1...m

. Note
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that, if we analyze the contributions of m mechanical modes, σ̃ is a
4m× 4m matrix.

Finally, we calculate the logarithmic negativity EN of σ̃ with re-
spect to the bipartition formed by the entangling and readout pulse, measuring the

entanglementhence the bipartition formed by the set of quadrature operators

R̂entangling ≡
{

Q̂(i)
t , P̂(i)

t

}
i=1...m

, (5.69)

R̂read-out ≡
{

X̂(i)
t , Ŷ(i)

t

}
i=1...m

. (5.70)

Note that, in this thesis, I use a slightly extended definition of the
logarithmic negativity which allows to ascribe different negative val-
ues to different separable states (while the standard definition always
yields zero for separable states). This extension, which is subtly am-
biguous in the multi-mode case, is explained in Section C.1.

As discussed in 5.3.3, c(τ) is an estimate of âsig(τ) only up to an
additional shot noise term. This is unavoidable because we simultane- added noise due to

dual-rail homodyningously measure x and y on the same field. But the additional shot noise
is statistically uncorrelated with âsig(τ) and we can independently
characterize its effects on our results. Therefore, we can subtract the
effect of the additional shot noise on the level of covariance matrices
as described in 5.3.3. Also the other post-processing steps (correction
for dark noise, homodyne visibility, and detector efficiency, and cali-
bration) should be performed in analogy to the single-mode case as
described in Section 5.3.3.

5.7 multimode simulations

5.7.1 Single-mode vs multimode

Let us first check that the multi-mode generalization of the proto-
col described in Section 5.6 can indeed reveal entanglement in the
output light of our optomechanical cavity. To this end, we analyze
multi-mode simulations using the single-mode and the multi-mode
protocol and compare the results. For simplicity, let us look at the
simplest case: a resonantly driven two-mode system with a moder-
ate mode spacing (roughly 400 kHz) and without optical noise. Fig-
ure 5.6 shows the results of applying a two-mode and a single-mode
evaluation in this situation. Indeed, the two-mode evaluation reveals
entanglement which the single-mode evaluation does not detect.

For comparison, the plot also shows the result for the correspond-
ing single-mode case (i.e. a simulation with only the first of the two
simulated modes). Over a wide range of pulse widths, the entan-
glement obtained in the single-mode simulation is quite similar to
that obtained in the two-mode evaluation of the two-mode simula-
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Figure 5.6.Parameters:
without optical noise,
ωm1 = 2π × 920 kHz,
ωm2 = 2π × 1.3 MHz,

κ ' 2.73×ωm1,
g0 ' 71× 10−6 ×ωm1,

Pin = 30 µW,
g ' 0.37×ωm1,
Q ' 15.8× 106,

T = 5 K.

Logarithmic negativity EN versus pulse width Γ for single-
and two-mode evaluations of a two-mode simulation. The two-mode
evaluation (green line, diamond markers) reveals entanglement for a
wide range of pulse widths (chosen identically for the first and the
second mode function), while the single-mode evaluation (blue line,
square markers) does not reveal entanglement. Note that the y-axis
has been broken in order to fit both curves into the same plot. For
comparison, the entanglement for a simulation with only the first of
the two modes is also plotted (red dashed-dotted line).

tion. Hence, even though the second mechanical mode can, if it is not
accounted for, completely destroy the entanglement, it does not add
significantly to the amount of detected entanglement for most pulse
widths in this scenario. (For very long pulses, i.e. very small pulse
widths, however, the two-mode evaluation/simulation yields signif-
icantly higher entanglement.) Note also that going from the single-
mode case to the two-mode case does not affect the optimal pulse
width very much; the optimum shifts only slightly towards narrower
pulses.

5.7.1.1 Correlation structure in the multi-mode case

To understand better why the single-mode evaluation fails to reveal
the entanglement if multiple mechanical modes are present, we can
analyze the states produced in the evaluations presented in Figure 5.6.
For simplicity, we fix the pulse width at Γ ' 40 kHz (at the value
yielding the maximum entanglement; dotted vertical line in Figure 5.6)
and compare the following states:

σ 1 : single-mode simulation (green, diamond marker in Figure 5.6).

σ 2 : two-mode evaluation of two-mode simulation (red, cross marker).

σ 21 : single-mode evaluation of two-mode simulation (blue, square).
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state simulation evaluation EN neff

σ1 1-mode 1-mode 0.23 5.59× 102

σ2 2-mode 2-mode 0.27 5.62× 102

σ21 2-mode 1-mode −7.5 3.39× 104

Table 5.1. Comparison of entanglement and effective occupation num-
ber for different numbers of modes used in the simulation and in the
evaluation.

Q1 P1 X1 Y1 Q2 P2 X2 Y2

Q1

P1

X1

Y1

Q2

P2

X2

Y2

−3 −2 −1 0 1 2 3
x 105

Q1

P1

X1

Y1

Q1 P1 Y1X1

Figure 5.7. Parameters:
as in Figure 5.6,
Γ = Γopt ' 40 kHz.

Density plot of covariance matrices resulting from different
types of evaluations. The colors of the frames for the different matrix
plots correspond to those in the corresponding plots of EN versus Γ in
Figure 5.6. Note that σ21 (right panel, blue frame; corresponding to the
1-mode evaluation of a 2-mode simulation) is a submatrix of σ2 (right
panel, red frame; corresponding to the 2-mode evaluation of the same
simulation). σ21 should be compared with σ1 (left panel, green frame)
which is the same evaluation but applied to a single-mode simulation.

Figure 5.7 shows a density plot of the covariance matrices correspond-
ing to these states, while some key characteristics of these states are
listed in Table 5.1.

As pointed out above, only σ1 and σ2 are entangled (with similar
values of EN ), while σ21 (single-mode evaluation of the two-mode
simulation) is separable. At the same time, σ1 and σ2 have almost the
same effective occupation number neff,41 whereas σ21 has an effective 41 Defined as the

occupation number of a
thermal state with the
same purity.

occupation number which is almost two orders of magnitude larger.
Hence, the purity and the entanglement of σ1 and σ2 are almost the
same, whereas σ21 is much less pure and separable.

This can be interpreted as follows. In the multi-mode case, the light
modes â(1), b̂(1) corresponding to a single mechanical mode are, in
general, strongly correlated with light modes â(j), b̂(j) corresponding
to other mechanical modes. In the single-mode evaluation, where single-mode evaluation
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we only look at â(1), b̂(1), this correlation looks like random noise,
i.e. it drastically decreases the purity of the modes â(1), b̂(1). This
decreased purity, in turn, prevents entanglement between â(1) and
b̂(1). The multi-mode evaluation, on the other hand, includes all lightmulti-mode evaluation

modes â(j), b̂(j) which are correlated with the light modes â(1) and b̂(1)

of primary interest in the evaluation. What looked like random noise
on the modes â(1) and b̂(1) before, can thereby be seen as correlations
with other light modes. In this way, the (global) purity is restored to
the original level and entanglement can be detected.

5.7.2 Full multi-mode case

The results of Section 5.7.1 establish the in-principle-suitability of our
entanglement detection protocol in a multi-mode setting. There may
still remain doubts, however, about the feasibility of this idea in a
MIM-cavity setting in which there are on the order of 50 mechanical
modes in a frequency range of only a few MHz. To check that we can
detect entanglement also in this situation, I performed simulations
with 45 mechanical modes with realistic parameters (frequencies ωm

and coupling rates g) for liquid Helium temperatures (T = 5 K) and
including optical noise as measured for our setup. I fixed all mechan-
ical quality factors at Q = 5× 106, such that the mechanical decoher-
ence rate for all mechanical modes in this simulation is given by

n̄γ =
kT
h̄Q
' 2π × 21 kHz. (5.71)

The result is presented in Figure 5.8. Entanglement appears for
pulse widths Γ ≥ 44 kHz. Hence, we can detect entanglement also
in an extreme multi-mode setting and, as expected, the entanglement
persists for pulse durations up to the order of the mechanical deco-
herence time. In contrast to the single- and two-mode case, however,
entanglement appears already for much shorter pulses (larger pulse
widths). The maximum amount of entanglement achieved in this ex-
ample is E(opt)

N ' 0.074.

5.7.2.1 Per-mode analysis of the full multi-mode case

Using the 45-mode simulation presented above, we can explore how
individual mechanical modes contribute to the entanglement in an
extreme multi-mode case. Figure 5.9 shows the logarithmic negativ-
ity (optimized over pulse width Γ) after tracing out one mode. This
optimum is plotted against the index of the mode which has been
traced out. The index refers to the position of the mode if modes are
ordered by ascending frequency.
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Figure 5.8. Parameters:
with optical noise,
ω1 = 2π × 800 kHz,
ω2,...,45/(2π ·MHz) '
{1.26, . . . , 4.56},
Q = 5× 106 (all modes),
g1 ' 0.37×ω1,
g2,...,45/ω1 ∈[
7.4× 10−3, . . . , 0.22

]
κ ' 2.73×ω1,
Pin = 20 µW,
T = 5 K.

Logarithmic negativity EN versus pulse width Γ for a simu-
lation of the first 45 modes of a SiN membrane of roughly 490 µm side
length. We assume a relative difference of the side lengths of below
1 h. This slight asymmetry introduces a relative frequency difference
of 0.03 h to 0.5 h between the otherwise degenerate modes ωi,j and
ωj,i. Couplings were calculated assuming optimal positioning along
the axial cavity direction and a slight misalignment of some µm along
the transversal directions yielding g1 ' 0.37× ω1 for the fundamental
mechanical mode and in between 7.4× 10−3×ω1 and 0.22×ω1 for the
higher mechanical modes. For lack of a good model for the clamping
loss, we set all mechanical quality factors to Q = 5× 106.

Figure 5.9. Parameters as in
Figure 5.8.

Logarithmic negativity EN for a 45-mode simulation with
all but one mode taken into account in the evaluation. Plotted is the
optimum of the logarithmic negativity against the index of the mechan-
ical mode which has been traced out (i.e. not taken into account in the
evaluation). The red horizontal line marks the optimum for the full
evaluation which takes all modes into account (E(opt)

N ' 0.074). Note
that the y-axis has been split to also show the outlier at index 1.
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Figure 5.10.Parameters as in
Figure 5.8

Logarithmic negativity EN for a 45-mode simulation with
a varying number of modes taken into account in the evaluation. Plot-
ted is the optimum of the logarithmic negativity against the index of
the last mechanical mode which has been taken into account (equiv-
alently, the number of modes taken into account). For example, the
third data-point corresponds to an evaluation which includes the first
three mechanical modes. The lower panel is a zoom-in of the upper
panel. The blue horizontal line marks the optimum for the full evalua-
tion which takes all 45 modes into account (E(opt)

N ' 0.074).

Figure 5.9 shows that there is only one mode we absolutely should
not forget, namely the fundamental mode (index 1): If we leave out
the fundamental mode, the entanglement persists but the logarithmic
negativity drops by almost 90 %. The next most important modes are
those with indices 3, 2, 6, 8, and 7, which correspond to the following
frequencies (in 2π ×MHz): 1.2651, 1.2647, 1.7892, 2.0398, and 2.0394
(membrane mode indices (1, 2), (2, 1), (1, 3), (2, 3), and (3, 2)). If
one of these five modes is not taken into account, the logarithmic
negativity drops by around 5 % to 10 %. For most other higher order
modes it does not make a big difference whether we take them into
account or not.

Note, however, that this does not mean that we can neglect all
higher order modes. This is demonstrated in Figure 5.10 which shows
the optimum of the logarithmic negativity as a function of the num-
ber of modes which are taken into account for the evaluation.

Figure 5.10 shows that, in this example, we need to take, at least,
the first four modes into account to detect entanglement. Including
the first ten modes is sufficient to reap two thirds of the maximum
amount of entanglement. This demonstrates clearly that we can limitsmall number of modes

is sufficient in the
evaluation

the evaluation to a small number of modes, which is good news be-
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Figure 5.11. Parameters as in
Figure 5.8

Increase ∆EN in logarithmic negativity when taking more
and more modes into account (in a 45-mode simulation). Plotted is the
change in the optimum of the logarithmic negativity against the index
of the last mechanical mode which has been taken into account (equiv-
alently, the number of modes taken into account). Note the logarithmic
y-axis.

cause it would be impossible to include all membrane modes (which
interact significantly) in the evaluation.

Figure 5.10 also shows that, with increasing number of added modes,
the marginal improvement in logarithmic negativity from adding more
modes becomes quite small. This can be seen even more clearly in Fig-
ure 5.11 which shows the gain in logarithmic negativity from adding
the next mode as a function of the number of included modes. Fig- marginal entanglement

gain from adding modesure 5.11 also shows that even though the marginal improvement be-
comes quite small, it does not converge to zero. This suggests that
there is no in-principle saturation of the entanglement for an increas-
ing number of mechanical modes. We should keep in mind however
that, for all simulated modes, the sideband resolution ωm/κ was rela-
tively small (the highest frequency is ω45 ' 2π× 4.56 MHz ' 2.1× κ).
If we add mechanical modes at increasingly high frequencies, we ex-
pect to see diminishing entanglement returns because, eventually, for
ωm � κ sideband creation is suppressed by the cavity envelope.

5.8 two-sideband protocol

In this section, I discuss an extension of the entanglement detection
protocol which I refer to as the “two-sideband protocol”. This pro-
tocol is more efficient in the sense of detecting significantly more
entanglement. For certain parameters, it even allows entanglement
detection where we could not detect entanglement without it.

Recall that the protocol for detecting mechanically mediated light-
light entanglement discussed so far relies on the analysis of only one
sideband per pulse and mechanical mode: We extract the lower side-
band in the first pulse and the upper sideband in the second pulse.

This protocol was motivated as follows: The lower sideband is
caused by the two-mode squeezing interaction while the upper side-
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band is caused by the beam-splitter interaction. Hence, first extract-
ing the lower sideband and then the upper sideband amounts to en-
tanglement creation (between the mechanical mode and the lower
sideband) followed by an entanglement swap (from the mechanical
mode onto the upper sideband).

In reality, however, both processes take place continuously. Hence,continuous production of
both sidebands a partial swap from the mechanical oscillator onto the upper side-

band takes place within each pulse. This means that there is a corre-
lation between the lower and the upper sideband not only in betweenintra-pulse correlations

two subsequent pulses (inter-pulse correlation), but also within each
pulse (intra-pulse correlation). If we evaluate the inter-pulse corre-
lation by taking only one sideband into account in a given pulse,
the intra-pulse correlation with the other sideband (which is not ac-
counted for in the evaluation) translates into increased mixedness of
the inter-pulse quantum state and, correspondingly, lower entangle-
ment. Note that this is in very close analogy to the discussion in Sec-
tion 5.7.1.1 regarding the increase in mixedness and corresponding
decrease in entanglement due to correlations with sidebands caused
by other mechanical modes.

5.8.1 Definition of the two-sideband protocol

This suggests that we can improve our entanglement detection pro-
tocol significantly by taking, within each pulse, both sidebands into
account. To this end, we define four mode functions per mechanicalextended set of

mode functions mode:

α̃
(i)
(±)(t) ≡ exp (±iωmit)× exp (Γit) (for t ≤ 0) , (5.72)

β̃
(i)
(∓)(t) ≡ exp (∓iωmit)× exp (−Γit) (for t ≥ 0) . (5.73)

α̃
(i)
(+) and β̃

(i)
(−) are the two mode functions which were previously con-

sidered. They extract the lower sideband for the first pulse and the
upper sideband for the second pulse, respectively. To these, we add
two additional mode functions α̃

(i)
(-) and β̃

(i)
(+)

which extract exactly the
opposite sidebands: the upper sideband for the first pulse and the
lower sideband for the second pulse, respectively. Hence, in this ex-
tended protocol, we analyze four light modes per mechanical mode.
The application of these mode functions to the actual measurement
data is exactly as described in detail in Section 5.3.1.

Again, we have to ensure that the mode functions are mutually
orthonormal. To this end, we apply a numerical orthonormalizationorthonormalization

procedure to the extended set of mode functions{
α̃

(i)
(+)(t), α̃

(i)
(-)(t), β̃

(i)
(−)(t), β̃

(i)
(+)

(t)
}

i=1...m
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in order to obtain a an orthonormal set of mode functions. Note
that mode functions belonging to different pulses are automatically
mutually orthogonal to each other since they have no overlap in time.
Hence, we do not need to orthonormalize any of the β-functions to
any of the α-functions. In Section C.4, an example of a set of mode
functions used for a two-sideband evaluation is given.

As mentioned above, this extension of the protocol will increase the
purity of the reconstructed state of the light field and should thereby
also increase the entanglement. Note that, in the two-sideband pro- expected effect on

entanglementtocol, we will always detect at least as much entanglement as in the
“single-sideband” protocol considered so far. This is because, with the
two-sideband protocol as defined above, switching back to a “single-
sideband” evaluation simply amounts to tracing out the added modes
α̃

(i)
(-) and β̃

(i)
(+)

and tracing out can only decrease the amount of entan-
glement.

5.8.2 Single-mode case

To verify that we can indeed profit from extending the protocol as
described in Section 5.8.1, we turn to simulations. For simplicity, we
consider only a single mechanical mode at first. Figure 5.12 shows
the entanglement as a function of pulse width for a single-mode sim-
ulation without optical noise and a mechanical quality factor of only
Q = 5× 105. The plot compares the results of a two-sideband eval-
uation to those of an evaluation which takes only one sideband per
pulse into account. Remarkably, entanglement can be detected with
the two-sideband evaluation despite the poor mechanical quality fac-
tor and a very small cooperativity of only C ' 3.7× 10−2, whereas
no entanglement is detected with the single-sideband evaluation.

5.8.2.1 Structure of the covariance matrix

Figure 5.13 demonstrates why the two-sideband evaluation is bene-
ficial: There are indeed very strong correlations between the light
modes α̃(+) and β̃(−) we considered before Section 5.8 (upper left
submatrix) and the light modes α̃(-) and β̃(+) (lower right submatrix)
which were added in Section 5.8.1. Because of these correlations, the
effective occupation number of the quantum state of only the modes
α̃(+) and β̃(−) is much higher (neff ' 63.1) than that of the quantum
state of the full two-sideband evaluation (neff ' 8.7). Because of this
increased mixedness there is no entanglement between the modes α̃(+)
and β̃(−) (EN ' −0.07), but there is entanglement between the set of
modes α̃(+), α̃(-) and the set of modes β̃(−), β̃(+) (EN ' 0.013).
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Figure 5.12.Parameters:
without optical noise,

ωm = 2π × 920 kHz,
κ ' 2.73×ωm,

g0 ' 7.1× 10−5 ×ωm,
g ' 0.15×ωm,

Q = 5× 105,
T = 5 K,

C ' 3.7× 10−2.

Logarithmic negativity EN versus pulse width Γ for a
single-mode simulation. The two-sideband evaluation (red, circle mark-
ers) yields entanglement while the single-sideband evaluation (blue,
square markers) does not. Keeping only the modes α̃(+) and β̃(−) from
the two-sideband evaluation (green, plus markers) yields the same re-
sults as the single-sideband evaluation, as expected. Keeping only the
modes α̃(-) and β̃(+) (purple, cross markers) yields even smaller values
of EN . Figure 5.13 shows covariance matrices corresponding to the
values marked by the gray beam (at Γ ' 266 kHz).
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Y(+)
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Figure 5.13.Parameters:
as in Figure 5.12.

Γ = Γopt ' 266 kHz
(marked with a gray
beam in Figure 5.12).

Covariance matrix (CM) for two-sideband evaluation of
a single-mode simulation without optical noise. The full CM (red
frame) results from the two-sideband evaluation, yielding entangle-
ment (EN ' 0.013) and a low effective occupation number neff ' 8.7.
The upper left CM (green frame) corresponds to the single-sideband
evaluation discussed before Section 5.8, which takes only the light
modes α̃(+) and β̃(−) into account. This yields EN ' −0.07 and
neff ' 62.3. The lower right CM (purple, dashed frame) corresponds to
the light modes α̃(-) and β̃(+) which yields EN ' −0.12 and neff ' 63.1.
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Figure 5.14. Parameters:
as in Figure 5.8.

Logarithmic negativity EN versus pulse width Γ for a sim-
ulation of the first 45 modes of a SiN membrane of roughly 490 µm side
length. For all pulse widths Γ, the two-sideband evaluation (red line)
yields more entanglement than the single-sideband evaluation (blue
line). The maximum of the two-sideband evaluation (E(max)

N ' 0.13) is
almost twice as large as the maximum of the single-sideband evalua-
tion (E(max)

N ' 0.07).

5.8.3 Multi-mode case

Finally, let us check whether the encouraging results of Section 5.8.2
also hold in a multi-mode setting. To this end, we reevaluate the
data from the 45-mode simulation presented in Figure 5.8 using the
two-sideband evaluation. The result is presented in Figure 5.14. The
45-mode simulation confirms that, also in an extreme multi-mode set-
ting, the two-sideband evaluation yields significantly more logarith-
mic negativity (E(max)

N ' 0.13 compared to E(max)
N ' 0.07 for the single-

sideband evaluation). Note that, in Figure 5.14 and in some of the fol-
lowing plots, black circle markers denote the pulse widths at which
the corresponding covariance matrix is physical, where “physical”
means that the covariance matrix satisfies generalized Heisenberg un-
certainty relations (sometimes referred to as the Robertson–Schrödinger
uncertainty relations); see e.g. [AI07, eq. (18)].

5.8.3.1 Structure of the covariance matrix

Let us step back for a moment: We have seen that under experimen-
tally realistic conditions, pulsed-continuous entanglement can be de-
tected if a suitable set of light modes is analyzed. I covered two ways
of extending the set of light modes under consideration. First, in
Section 5.6 and Section 5.7, I showed how to deal with multiple me-
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Figure 5.15.Parameters:
without optical noise,

ω1 = 2π × 920 kHz,
ω2 ' 1.45×ω1,

κ ' 2.73×ω1,
g1 = g2 ' 0.37×ω1,

Q1 = Q2 ' 15.8× 106,
T = 5 K.

Covariance matrix (CM) for two-sideband evaluation of a
two-mode simulation without optical noise. The full CM (red frame)
results from the two-sideband evaluation and yields EN ' 0.3. The
blocks surrounded by blue frames correspond to the single-sideband
evaluation discussed before Section 5.8, which yields EN ' 0.09. The
upper left block, corresponds to a single-mode, two-sideband evalua-
tion, which does not yield entanglement (EN ' −0.22). In this simu-
lation, a slight red-detuning of the laser of ∆ = 2π × 25 kHz has been
assumed (see Section 5.9).

chanical modes. Next, in Section 5.8, I showed that including both
sidebands for each pulse (and each mechanical mode) can improve
the protocol even further.

Figure 5.15 brings both of these extensions together in one plot. It
shows the covariance matrix for a two-sideband evaluation of a two-
mode simulation. The quadratures have been arranged such that the
light modes pertaining to each mechanical mode form a connected
block.

It is immediately apparent from the resulting very clear block struc-
ture that there are strong correlations between all the light modes
pertaining to the same mechanical mode. In particular, there are also
very strong correlations between the light modes corresponding to
the same mechanical mode within the same pulse (intra-pulse corre-intra-pulse correlations

lations). And we have seen that the two-sideband protocol, by taking
these intra-pulse correlations into account, indeed yields much more
logarithmic negativity (in the example plotted here: EN ' 0.3 instead
of EN ' 0.09).

In addition, we see some correlations between these blocks: Thesecorrelations between
light-modes corresponding

to different mechanical
modes

are the correlations which connect light modes pertaining to differ-
ent mechanical modes. Surprisingly, neglecting these correlations be-
tween light modes related to different mechanical modes has a much
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bigger effect on the entanglement than neglecting the intra-pulse cor-
relations for each mechanical mode. In fact, it leads to a complete
loss of entanglement (EN ' −0.22 instead of EN ' 0.3).

In this sense, the multi-mode protocol of Section 5.6 is absolutely
essential for detection of entanglement in a multi-mode setting, while
the two-sideband extension is very beneficial but, in general, not
strictly necessary.

5.9 detuned drive

So far, we assumed a resonant laser drive. In a real experiment, how-
ever, this assumption cannot be met exactly because the laser detun-
ing is always fluctuating slightly. In fact, from an experimental point
of view, we would even prefer to work with a slightly red-detuned
drive because, under these conditions, the experiment is much more
stable and therefore easier to operate (especially at higher input pow-
ers). Therefore, this section is devoted to the question: Can we gener-
ate and detect entanglement also with a red-detuned laser drive?

We expect the basic idea of our entanglement detection protocol to
also work with a moderate detuning: Even with a detuned drive—we
still get the sidebands from the two-mode squeezing and the beam-
splitter part of the interaction at −ωm and +ωm (with respect to our
local oscillator). Hence, the extraction of the sidebands from our mea-
surement data still works in the same way. The main difference is that,
for a red-detuned laser drive, the sideband at +ωm has a higher pho-
ton flux than the sideband at −ωm. This is due to the peak of the sideband asymmetry

cavity transmission function being slightly shifted towards the upper
sideband which leads to the well-known phenomenon of laser cool-
ing of the mechanical oscillator [MK04; Mar+07; Wil+08; Grö+08]. But
since we work with a relatively broad cavity (κ ' 2.7 MHz) and out-
side the resolved-sideband regime (κ � ωm . 1 MHz) , a moderate
detuning of some 100 kHz only leads to a small sideband-asymmetry
of less than 2 : 1.42 Applied to our protocol, this means that the vari- 42 Using the expression

SFF(+ωm)
SFF(−ωm)

=

(ωm−∆)2+(κ/2)2

(ωm+∆)2+(κ/2)2 from
[Mar+07]

ances of the light modes targeting the upper sideband will be larger
than that of its counterpart for the lower sideband, but they are still
on the same order of magnitude.

Of course, even though the asymmetry between the sidebands in
terms of photon flux is quite moderate, a red-detuned drive will
still lead to significant cooling of the mechanical modes and thereby laser cooling of mechanical

modeschange the dynamics of the system drastically. The expected cooling
factor (neglecting optical noise) can be as high as 104 for the parame-
ters considered below.43 The question is: Does this help or hinder the 43 Cooling of 6× 103 for

the parameters of
Figure 5.18.

detection of entanglement?
Below (Section 5.9.1 and Section 5.9.3), I show that a moderately

red-detuned drive, generally, has a neutral to beneficial effect on the
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entanglement. More specifically, it leads to a decreased sensitivity to
higher-order mechanical modes as shown in Section 5.9.3.

Related to the cooling, we also expect a significant decrease in the
autocorrelation time of the pulse quadratures. This is because the
autocorrelation time is inversely proportional to the damping rate of
the mechanical oscillator which increases due to the cooling. Since, in
the case of membrane modes, we are dealing with very small intrin-
sic mechanical damping rates, the added optical damping can make a
massive difference in this respect. For the parameters explored below,
the difference in damping between the resonant and detuned case can
be as large as 104. Since the autocorrelation time of the pulses deter-
mines the measurement time needed to gather significant statistics
for our experiment, a drastic reduction of the autocorrelation time is,
in general, quite beneficial. This aspect is discussed in section Sec-
tion 5.9.2.

5.9.1 Single-mode simulations

To explore the effect of a red-detuned drive, we first consider the
simple case of a single mechanical mode. Figure 5.16 shows the max-
imum logarithmic negativity EN (Γopt) (optimized with respect to the
pulse width Γ) as a function of the optomechanical coupling g for
three different mechanical quality factors. We contrast the curves
resulting from simulations with a resonant drive (blue-greenish lines,
square markers) to those for a 200 kHz-red-detuned drive (red-purplish
lines, circle markers). In both cases, optical noise was included. Note
that the chosen detuning ∆ = 2π × 200 kHz is relatively small com-
pared to both the mechanical frequency of ωm = 2π × 920 kHz as
well as the cavity linewidth κ ' 2π × 2.73 MHz.

We detect entanglement in both the resonant as well as in the de-
tuned case if the mechanical quality factor exceeds 5× 106. Hence,
detuning the drive does not prevent us from generating and detecting
entanglement. In the resonant case, however, the detected entangle-
ment depends significantly on the exact value of the optomechanical
coupling g. With a red-detuned drive, in contrast, we are much less
sensitive to the exact value of the optomechanical coupling g.

In fact, the strong sensitivity to the exact coupling strength in the
resonant case is related to the optical noise. This is demonstrated
in Figure 5.17 which compares the optimal entanglement E(opt)

N =

EN
(
Γopt

)
for a resonant and a red-detuned drive (∆ = 200 kHz) and

with and without optical noise. For the detuned case (red curves),
both noisy and noise-free simulations yield very smooth and mono-
tonically increasing E(opt)

N (g)-curves. In the resonant case (blue curves),
on the other hand, there is a stark difference between the noise-free
and noisy simulations: Without optical noise (solid line), E(opt)

N (g) is
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Q = 5E5
Q = 5E6
Q = 5E7

resonant
drive

200kHz
red-detuned

drive

Figure 5.16. Parameters:
with optical noise,
ωm = 2π × 0.92 MHz,
κ ' 2.73×ωm,
g0 ' 71× 10−6 ×ωm,
Pin = [2.5, . . . , 50]µW,
g ' [0.1, . . . , 0.48]×ωm,
Q = 5·

[
105, 106, 107],

∆ = 2π × [0, 200] kHz,
T = 5 K;
single-sideband eval.

Maximum of logarithmic negativity EN (Γopt) versus op-
tomechanical coupling g for resonant and red-detuned single-mode
simulations with optical noise and different mechanical quality factors
Q. Blue-greenish lines with square markers correspond to simulations
with a resonant drive. Red-purplish lines with circle markers corre-
spond to simulations with a drive which is red-detuned by 200 kHz. In
both cases, entanglement is achieved if and only if Q ≥ 5× 106. For
the detuned simulations, entanglement is a monotone function of the
input power, whereas, for the resonant simulations, its dependence on
the input power is significantly more erratic.



134 towards pulsed-continuous entanglement

Figure 5.17.Parameters:
with and without

optical noise,
Q ' 15.8× 106,

rest as in Figure 5.16.

Maximum of logarithmic negativity EN (Γopt) versus op-
tomechanical coupling g for single-mode simulations with optical noise
(dashed lines) and without optical noise (solid lines) and for different
laser detunings ∆. Blue (red) lines correspond to simulations with a
resonant (200 kHz-red-detuned) drive, respectively.

a rather smooth function with a single local maximum for g ' ωm/3,
whereas with optical noise (dashed line), E(opt)

N (g) shows several local
maxima and drops quite drastically for g > 0.4×ωm.

It is quite interesting, that both with and without optical noise, the
red-detuned drive yields monotonically increasing functions E(opt)

N (g)
for all values of g considered here (g < ωm/2), while for a resonant
drive, we obtain a maximum of E(opt)

N (g) at around g ' ωm/3. Hence,
a slightly detuned drive allows to go to higher coupling strengths
without negatively impacting the entanglement.

5.9.2 Impact on the required measurement time

To be able to reliably estimate entanglement for our experiment, we
need to gather a significant number of statistically independent pulse
pairs. Another way of saying this is: We need to measure orders of
magnitude longer than the autocorrelation time of the pulse pairs. As
demonstrated in the appendix in Section C.7, the autocorrelation time
of the pulse quadratures is essentially given by the inverse mechan-
ical line width. Since the mechanical linewidth can be well below
1 Hz for membrane modes, gathering 104 independent pulse pairs,
takes at least 104 s ' 2.8 h. Multiply this by the desired number of
independent measurements (e.g. at different optical powers) and this
requirement begins to look quite daunting.

Fortunately, the mechanical line width can be increased drastically
by optical cooling, i.e. by using a moderately red-detuned drive. Thisoptically broadened

mechanical line-width optical increase in line width is accompanied by a drastic reduction of
autocorrelation times as demonstrated in Section C.7. We therefore
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expect to be able to collect significant statistics much more quickly
using a red-detuned drive. Can we verify that?

Recall that the time evolution of our optomechanical system is lin-
ear, all driving noise processes are Gaussian, and the transformations
from the quadratures of the output light field to the pulse quadra-
tures are linear too. Therefore, we expect the stationary joint distri-
bution (and, a fortiori, also the stationary marginal distributions) of
the pulse quadratures to be Gaussian. Since, we expect the distribu- stationary distribution of

pulse quadratures is
Gaussian

tion of the measured pulse quadratures to approach the stationary
distribution with increasing measurement time, we also expect it to
become more and more Gaussian.

Therefore, by measuring the deviation from Gaussianity as a func-
tion of measurement time for the detuned and the resonant case, we
can study the impact of detuning on our ability to collect significant
statistics. Since a detuned drive reduces the autocorrelation time and approach to Gaussianity

with increasing
measurement time

thereby increases the effective number of independent samples per
measurement time, it should yield a faster approach to stationarity
and, correspondingly, a faster approach to Gaussianity for the pulse
quadratures. Figure 5.18 confirms this expectation: With a resonant
drive, the statistics only starts to approach Gaussianity for measure-
ments longer than the inverse mechanical linewidth (black vertical
line) because for shorter measurements all samples are strongly cor-
related. For a detuned drive, on the other hand, the trend towards a
Gaussian distribution begins already for much shorter measurement
times. Also, for any given measurement time, Gaussianity is better in
the detuned case than in the resonant case.

As discussed in Section C.7, the increase in mechanical linewidth
and decrease in autocorrelation time is expected to be on the order
of four orders of magnitude. Correspondingly, we expect the mini- impact on

measurement timemum required measurement time to go down from 104 s ' 2.8 h to
on the order of a second using a 200 kHz red-detuned drive. Hence,
in this respect, we gain enormously by operating the experiment in a
moderately red-detuned regime.

5.9.3 Two-mode simulations

To make sure detuning does not hurt our ability to detect entangle-
ment in the presence of multiple mechanical modes, we also explored
the effect of a detuned drive in multi-mode simulations. Below, I
present the results of two-mode simulations with varying detuning.
Results for a detuned simulation with 45 mechanical modes are pre-
sented in the appendix, in Section C.8.

The simulations presented below show that, surprisingly, a mod-
erate drive detuning can increase the detected entanglement signif-
icantly. Importantly, this increase in detected entanglement is even
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Q (resonant)
P (resonant)
X (resonant)
Y (resonant)

Q (detuned)
P (detuned)
X (detuned)
Y (detuned)

Sample no.  (Pulse pairs) 8 16 32 64 128 512 2048
4096

8192
1024

Figure 5.18.Parameters:
with optical noise,

ωm = 2π × 0.92 MHz,
κ ' 2.73×ωm,

g0 ' 71× 10−6 ×ωm,
Pin = 15 µW,

g ' 0.26×ωm,
Q = 5× 106,

∆ = 2π × [0, 200] kHz,
T = 5 K.

Approach of measured statistics of the pulse quadratures
to Gaussianity for single-mode simulations with a resonant (greenish,
square markers) and a 200 kHz red-detuned drive (red-purplish, circle
markers). Plotted is the deviation from Gaussianity for each individual
pulse quadrature as a function of measurement time. Deviation from
Gaussianity is measured as a distance between the empirical cumula-
tive distribution function (cdf) of the data and the cdf of a Gaussian
distribution with the same mean and variance as the full simulated
sample. For a resonant drive, Gaussianity is only approached for mea-
surements longer than the inverse mechanical linewidth (black vertical
line). For a detuned drive, in contrast, the trend towards Gaussianity
begins already for much shorter measurement times. The red dashed-
dotted vertical line marks the inverse of the effective (optically broad-
ened) mechanical linewidth Γeff ' Γopt ' 7.2× 10−2 × ωm in the de-
tuned case. Measurements can never be as short as 1/Γeff, however,
since they must be longer than the duration of a single pulse-pair (see
secondary x-axis for conversion of measurement time to pulse pairs).
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more pronounced if we evaluate only one of the simulated mechan-
ical modes. These advantages of detuning accrue in addition to
the beneficial effect on the measurement statistics discussed in Sec-
tion 5.9.2. Unfortunately, we do not yet have a good understanding
of the detuning-induced entanglement increase. Therefore, this sec-
tion is intended as an outlook in the hope that the results presented
here might be valuable input to further investigations.

Figure 5.19 shows the maximum amount of entanglement which
can be detected in two-mode simulations as a function of mode spac-
ing (i.e. the frequency difference between first and second mode) for
different drive detunings (color-coded) . Note that there are two sets
of curves in this plot, those resulting from a two-mode evaluation
(dashed lines, square markers) and those resulting from a single-
mode evaluation (solid lines, circle markers).

Let us first focus on the two-mode evaluations. As expected, they
always yield more entanglement than the corresponding single-mode
evaluations, (see Section C.3 for a discussion). As a function of fre- two-mode evaluation

quency separation of the modes (x-axis of Figure 5.19), the entan-
glement detected in two-mode evaluations reaches an optimum at
around a frequency difference of ω2 − ω1 ' 20 %. For increasing fre-
quency separation, the entanglement decreases again to values com- entanglement as function

of mode separationparable to those reached in a single-mode evaluation (solid lines in
the same plot). Hence, with increasing frequency (increasing distance
from the fundamental mode), the second mode seems to add less and
less to the total entanglement. This behavior would be expected for
very large frequencies of the second mode (for ω2 � κ). That it hap-
pens here already for ω2 . κ is surprising and we do not have a good
explanation for this effect at the moment.

As a function of the detuning of the laser drive, the detected entan-
glement rises monotonically up until ∆ = 2π × 800 kHz (the largest entanglement as

function of detuningsimulated detuning). This suggests that we can gain considerably by
using a red-detuned drive. Note however that, for fixed input power
(as assumed in these simulations), there will be a finite optimum de-
tuning. This is because, for increasing detuning, the intracavity light
amplitude and therefore also the optomechanical coupling will even-
tually decrease significantly, which will limit the generation of entan-
glement.

What happens if we only analyze the first of the two mechanical
modes simulated here? The answer is provided by the solid lines (cir- single-mode evaluation

cle markers) in Figure 5.19. For decreasing frequency difference of
the mechanical modes, the entanglement detected in a single-mode
evaluation decreases and eventually disappears. This is the effect entanglement as function

of mode separationdiscussed in Section 5.7.1 which can destroy entanglement if mechan-
ical modes are sufficiently close but not all of them are taken into
account in the evaluation. For increasing frequency difference of the
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1-mode
evaluation

2-mode
evaluation

Figure 5.19.Parameters:
without optical noise,
ωm1 = 2π × 920 kHz,

ωm2 '
{1.1, . . . , 2.1} ×ωm1,

κ ' 2.73×ωm1,
g0 ' 71× 10−6 ×ωm1,

Pin = 30 µW,
g ' 0.37×ωm1,

Q1 = Q2 = 15.8× 106,
T = 5 K, two-sideband

evaluation.

Optimum of logarithmic negativity EN
(
Γopt

)
in two-mode

simulations with different mode spacings and detunings. The y-axis
shows the logarithmic negativity optimized with respect to the pulse
width Γ. The x-axis is the frequency difference of the two simulated
modes in units of ωm1 (hence, x = 1 corresponds to ωm2 = 2× ωm1;
ωm1 was fixed at 2π × 920 kHz). The different curves correspond to
different red-detunings of the drive from 25 kHz (lightest) to 800 kHz
(darkest). Contrasted are two different types of evaluations: Single-
mode evaluations which take only the first mechanical mode into ac-
count (solid lines, circle markers) and two-mode evaluations which
take both mechanical modes into account (dashed lines, square mark-
ers). Note that, in these simulations, the optical input power was fixed.
This means that the intracavity power and hence also the optomechani-
cal coupling g changed with the detuning ∆. Because of the large cavity
linewidth κ � ∆ this effect is negligibly small, however.
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simulated modes, on the other hand, the entanglement approaches
a steady value. Hence, if the frequency spacing is large enough, the
second mode stops to negatively impact the entanglement detected
in the single-mode evaluation. As explained above, this effect would
be expected for very large frequencies ωm2 of the second mode but
happens here already for surprisingly small values of ωm2.

For increasing detuning, on the other hand, the detected entangle-
ment rises significantly. Interestingly, this effect—while in principal entanglement as

function of detuningsimilar to what happens for the two-mode evaluations (dashed lines,
square markers in Figure 5.19)—is much stronger than in the case of
the two-mode evaluations. In fact, the added entanglement due to
the increased detuning can make the difference between entangled
and separable in the case of the single-mode evaluations.

The conclusion is that, in some cases, a moderate detuning of the
drive will allow us to “forget” some of the mechanical modes in the
evaluation. Obviously, this could be advantageous in experiments “forgetting” higher

mechanical modeswhere it may not always be possible to include all mechanical modes
in the evaluation—either because of computational constraints or be-
cause it may not be possible to characterize the optomechanical sys-
tem sufficiently well.

5.9.3.1 Outlook

As mentioned above, we do not currently understand why detuning
is so beneficial in the multi-mode case. An analysis of the correlations
between different light modes as a function of detuning seems to be
required. How could this problem be approached theoretically? An
exact and general analysis of the correlation of different light modes
in the multi-mode case is difficult and will likely not yield much
insight.

It might therefore be better to start with a very simple toy model
of the light modes analyzed in the experiment. One could, for exam-
ple, assume the quadratures of the different mechanical sidebands
to be roughly constant within one pulse. This should allow to write
the covariance matrix for the pulse quadratures as a function of the
covariances of the sideband quadratures (which depend on the de-
tuning and coupling) and the parameters defining the light modes
(central frequency and pulse width). Maybe such a simple model
could already help to gain some insights into the effects of detuning
and of additional mechanical modes.

5.10 inter-pulse delays

Much of the beauty—and some of the headache—of our entangle-
ment protocol comes from the fact that all the action is shifted to
post-processing. The headache is in the huge amounts of raw data
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we need to handle: Whereas [Pal+13b] needed to record only 4 pulse
quadratures times 104 repetitions to show entanglement, we need to
record continuous time traces at high sampling rates which can add
up to hundreds of gigabytes of data. The beauty, however, is that this
raw data contains much more information than only one particular
set of pulse quadratures. This means that we can explore correlations
between many different light modes simply by reevaluating the same
raw data.

This section illustrates this advantage of the pulsed-continuous
entanglement protocol using the example of a variable “dead-time”
or delay ∆t in between the entangling and the readout pulse. In
[Pal+13b] such a delay44 was implemented by switching off the mi-44 In their case,

∆t = 10 µs. crowave drive for a time ∆t. Therefore, in experiments such as [Pal+13b],
analyzing the effect of a different delay means redoing the measure-
ment.

In our protocol, on the other hand, analyzing the effect of a differ-
ent delay means simply redoing the evaluation of the same raw data
with a different set of mode functions. A suitable redefinition of the
mode functions for exploring inter-pulse delays is the following:

ât,∆t ≡
∫ t−∆t/2

−∞
α (τ − t) âsig(τ)dτ, (5.74)

b̂t,∆t ≡
∫ +∞

t+∆t/2
β (τ − t) âsig(τ)dτ. (5.75)

In the application to data from measurements or simulations, this re-
definition simply amounts to skipping ∆t× fsample samples (rounded
to the nearest integer) in between the two pulses.

5.10.1 Application 1: Measuring mechanical decoherence

By increasing the inter-pulse delay ∆t, we can “watch” decoherence
degrade the entanglement between the two pulses (as shown in Fig-
ure 5.20 for simulated data). Hence, evaluation of the same measure-
ment data with different inter-pulse delays yields a measurement of
mechanical decoherence.

Figure 5.20 shows an application of this idea to simulated data. The
time scale over which entanglement is lost is defined by the mechan-
ical decoherence time (n̄γ)−1. In this simulation, (n̄γ)−1 ' 7.6 µs for
all mechanical modes which agrees well with the observed disappear-
ance of entanglement for inter-pulse delays of more than a few µs.
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Figure 5.20. Parameters:
same as in Figure 5.14;
two-sideband eval.;
∆t = [0 µs, . . . , 6.4 µs].

Logarithmic negativity EN versus pulse width Γ for a 45-
mode simulation for different inter-pulse delays ∆t. The evaluation
with ∆t = 0, i.e. directly adjacent pulses (red solid line; same as in
Figure 5.14) yields the highest value of the logarithmic negativity. The
maxima of the entanglement curves with non-zero inter-pulse delay
(blue solid lines) decrease monotonically with increasing inter-pulse
delay (towards lighter blues).

5.10.2 Application 2: Preventing spurious correlations

Note that, in the experiment, small dead-times in between the pulses
can also be used to exclude potential spurious inter-pulse correlations. eliminating spurious

inter-pulse correlationsSpurious correlations can arise, for example, due to low-pass filters in
the detector circuits which act as integrators in the time domain. In
contrast to legitimate quantum correlations, such correlations due to
imperfect detection will occur even for shot noise measurements. To
check that the inter-pulse delay was chosen sufficiently large to elimi-
nate these effects we can therefore analyze shot noise measurements:
Assume there is some ∆tcritical, such that, for all inter-pulse delays
∆t > ∆tcritical, we do not observe systematic correlations between the
entangling and readout pulse for shot noise measurements. Then, we
have good reasons to believe that, for the same delays ∆t > ∆tcritical,
any correlations in the signal are not caused by the detector circuits.

Unfortunately, this idea cannot solve all problems related to filters
in the detector circuit. The problem is that filters will not only lead to
spurious inter-pulse correlations, but also to spurious intra-pulse corre-
lations. That is, if there are several light modes per pulse, filters will spurious intra-pulse

correlations remainintroduce correlations between these light modes even for shot noise
measurements. These spurious inter- and intra-pulse correlations can
lead to strongly unphysical covariance matrices45 and unrealistically 45 As mentioned before,

“unphysical” covariance
matrices are those which
do not satisfy generalized
Heisenberg uncertainty
relations.

large entanglement values.
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We actually see this problem in our experimental data and it is not
yet clear how to best deal with it. Therefore, I discuss this problem
in some more depth in the following Section 5.11. It is important
to realize that the problem is not specific to our setup. In fact, no
detector has a perfectly flat response in frequency (equivalently, a
δ-function response in time). The main exacerbating factor in our
experiment is the need to analyze several mechanical modes. This
means, as discussed, that the problem cannot be solved completely
by introducing an inter-pulse delay.

The main asset of our protocol, on the other hand, is its enormous
flexibility. Because, everything is done in post-processing, we can ex-
plore the effect of the detector response much more thoroughly. And
there might well be ways to adapt our protocol to cleanly account for
a non-flat detector response.

5.11 non-flat detector response

In the theory and simulations presented so far, I assumed that the
detector response is independent of frequency. Unfortunately, this is
not true in our experiment, since the detection electronics includes
a high-pass filter with a cut-off frequency of roughly 200 kHz and a
low-pass filter with a cut-off at roughly 12 MHz (see Section 3.2.2).
Hence, two questions arise:

1. How does a non-flat detector response affect our entanglement
detection protocol? The answer, as already hinted at, is that
it can lead to spurious correlations which, in turn, can lead to
unphysical covariance matrices and nonsensical entanglement
values. This problem is discussed in Section 5.11.1, together
with some ideas how to tackle it.

2. Is this only an in-principle problem? Or is our current experi-
mental setup actually affected by it? The answer, unfortunately,
is that it actually is a problem for our experiment and we see
clear indications of it in our measurement data. This is dis-
cussed in Section 5.11.2 and Section 5.11.3.

5.11.1 Analytic toy example

To better understand the implications of a non-flat detector response,
I resort to a simple analytic model. In our experimental setup, a
frequency-dependent detector response arises (amongst others) due
to a 12 MHz low-pass filter in the detection signal paths. This fil-
ter (as well as any other filters occurring in our detectors) can be
modeled as an infinite impulse response (IIR) filter with an impulse
response function h(t). The signal c̃(t) which we actually measure in
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the presence of the filter is therefore related to the ideal, unfiltered
measurement signal c(t) by a convolution:

c̃(t) ≡ (h ∗ c) (t) ≡
∫ +∞

−∞
h(t− τ)× c(τ)dτ. (5.76)

Since the filter is causal, the impulse response h(t) is non-zero only
for positive t. Therefore, we could also write the above as

c̃(t) =
∫ t

−∞
h(t− τ)× c(τ)dτ. (5.77)

The calculation of the pulse modes according to (5.65) then yields

a(i)
t =

∫ t

−∞
α(i) (τ − t) c̃(τ)dτ, (5.78)

b(i)
t =

∫ +∞

t
β(i) (τ − t) c̃(τ)dτ. (5.79)

Since α(i)(t) = 0 for t > 0 and β(i)(t) = 0 for t < 0 we have

a(i)
t =

∫ +∞

−∞
α(i) (τ − t) c̃(τ)dτ, (5.80)

b(i)
t =

∫ +∞

−∞
β(i) (τ − t) c̃(τ)dτ. (5.81)

Re-expressing the filtered signal c̃ (τ) according to (5.76) yields

a(i)
t =

∫ +∞

−∞
dτ α(i) (τ − t)

{∫ +∞

−∞
dτ′ h

(
τ − τ′

)
× c

(
τ′
)}

(5.82)

=
∫ +∞

−∞
dτ′ c

(
τ′
) {∫ +∞

−∞
dτ α(i) (τ − t)× h

(
τ − τ′

)}
(5.83)

=
∫ +∞

−∞
dτ′ c

(
τ′
)
× α

(i)
h

(
τ′, t

)
, (5.84)

where we defined a new “filtered mode function” filtered mode functions

α
(i)
h

(
τ′, t

)
≡
∫ +∞

−∞
dτ α(i) (τ − t)× h

(
τ − τ′

)
. (5.85)

Analogously, we obtain

b(i)
t =

∫ +∞

−∞
dτ′ c

(
τ′
)
× β

(i)
h

(
τ′, t

)
, with (5.86)

β
(i)
h

(
τ′, t

)
≡
∫ +∞

−∞
dτ β(i) (τ − t)× h

(
τ − τ′

)
. (5.87)

(5.84) and (5.86) show that applying our original mode functions α(i)

and β(i) to filtered measurement data has the same effect as applying
the filtered mode functions α

(i)
h and β

(i)
h to ideal measurement data.
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without filter

with 1st order
lowpass filter

Abs
Re
Im

Figure 5.21. Comparison of the mode functions α(i) and β(i) (upper
panel) to the effective mode functions α

(i)
h and β

(i)
h in the presence of a

first-order low pass filter (lower panel). The gray bar in the lower panel
indicates times for which the filtered mode functions overlap. Note
that, for the sake of visual clarity, only positive values are plotted.

Note that the filtered mode functions α
(i)
h and β

(i)
h are identical to the

original mode functions α(i) and β(i) exactly if h (τ − τ′) = δ (τ − τ′),
i.e. exactly if the detector has a flat response. Otherwise, α

(i)
h and β

(i)
h

are “smeared out” versions of the original mode functions. We can
illustrate this for the simple example of a first-order low pass filter
with impulse response h (t) ∝ exp (−t/tc)Θ (t).4646 Θ (t) is the

Heaviside theta function. Figure 5.21 shows the mode functions α(i) and β(i), defined as in
(5.1) and (5.2), and the corresponding filtered mode functions α

(i)
h and

β
(i)
h for a first-order low pass filter with cutoff frequency t−1

c . I assume
t−1
c > Γ(i), i.e. a filter response time which is shorter than the decay

time of the pulse modes (satisfied in our experiment). For this simple
toy example, analytic expressions for α

(i)
h and β

(i)
h can be found:

α
(i)
h (t) ∝

Θ (−t) e(iωm
(i)+Γ(i))t︸ ︷︷ ︸

≡(A1)∝α(i)(t)

−Θ (−t) et/tc︸ ︷︷ ︸
≡(A2)

 · c+, (5.88)

β
(i)
h (t) ∝

Θ (+t) e(iωm
(i)−Γ(i))t︸ ︷︷ ︸

≡(B1)∝β(i)(t)

−Θ (−t) et/tc︸ ︷︷ ︸
≡(B2)

 · c−, with (5.89)

c± ≡
√

Γ(i)

t−1
c − (iωm(i) ± Γ(i))

. (5.90)

The first terms (A1) and (B1) of the above expressions are propor-
tional to the original mode functions; hence, (A1) and (B1) do not
have overlap in time and are orthogonal. The second terms (A2) and
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(B2), however, do have overlap in time: (B2) is proportional to Θ (−t)
which describes a “leakage” of the readout mode into the entangling
mode; this is apparent in the lower panel of Figure 5.21 (emphasized
by the gray bar). Because of the additional terms (A2) and (B2), the non-orthogonality of

filtered mode functionsfiltered mode functions α
(i)
h and β

(i)
h are not orthogonal to each other.

In our toy example, we can find an analytic expression for the over-
lap:47 47 Note that (5.88) and

(5.89) must be normalized
to arrive at this expression.
In the experiment, this
happens implicitly via the
calibration to shot noise.

∫ +∞

−∞
α

(i)
h (t) · β(i)

h
∗
(t) dt =

Γ(i)tc
(
1 +

(
Γ(i) − iωm

(i)) tc
)

(1 + Γ(i)tc) (1 + (Γ(i) + iωm(i)) tc)
. (5.91)

This undesired overlap tends to zero if Γ(i)tc goes to zero, i.e. in the
limits of a flat detector response or a very narrow pulse. We can
expand (5.91) around Γ(i)tc = 0 and obtain:∫ +∞

−∞
α

(i)
h (t) · β(i)

h
∗
(t) dt = Γ(i)tc +O

((
Γ(i)tc

)2
)

. (5.92)

This means that, in the limit of small tc, i.e. large cut-off frequencies
of the filter, the overlap is proportional to the pulse width Γ(i). We
therefore expect potential problems introduced by the filter to become
more prevalent with increasing pulse width.

How does the filter affect the overlap of modes belonging to the
same pulse, e.g. two modes α(i) and α(j)? For our simple toy exam- intra-pulse overlap

ple, the problem can again be solved analytically. We define α(i) as
above; hence, α

(i)
h (t) is still given by (5.88). We define a second mode

α(j)—with the same functional form as α(i) (see (5.1)) and the same
pulse width Γ = Γ(i) = Γ(j) but with a different central frequency
ωm

(j) 6= ωm
(i)—and orthogonalize it with respect to α(i). Then, we ap-

ply (5.85) to α(j) and derive α
(j)
h (t). The resulting expression is lengthy

and not very insightful but it allows us to derive an expression for the
mode overlap between the filtered mode functions α

(i)
h and α

(j)
h . The

full expression is rather lengthy but, as with (5.91), it tends to zero
for Γtc → 0 and it has a compact expansion for small Γtc:∫ +∞

−∞
α

(i)
h (t) · α(j)

h

∗
(t) dt = (5.93)

= i sgn (∆ωm)
2Γ− i∆ωm√
4Γ2 + ∆ωm2

× Γtc +O
(
(Γtc)

2
)

,

where ∆ωm ≡ ωm
(j) − ωm

(i) and sgn (∆ωm) is the sign of ∆ωm. We
are most interested in the absolute value of the mode overlap (5.93),
which is a measure of the amount of spurious correlations introduced
by the filter. It is again given by∣∣∣∣∫ +∞

−∞
α

(i)
h (t) · α(j)

h

∗
(t) dt

∣∣∣∣ = Γtc +O
(
(Γtc)

2
)

. (5.94)
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We conclude that, in the limit of large cut-off frequencies t−1
c , the

undesired overlap between modes of the same pulse is proportional
to the pulse width Γ.

With the help of (5.85) and (5.87), we can therefore express the
problem introduced by a non-flat detector response very succinctly
as follows. The filtered mode functions—the mode functions we effec-rephrasing the problem

tively apply to our signal—are, in general, not mutually orthogonal.
This problem manifests in two different ways:

1. An overlap between α
(i)
h and β

(j)
h , i.e. an overlap between modes

of the entangling pulse and the readout pulse as demonstrated
in (5.91). This leads to spurious inter-pulse correlations.

2. An overlap between α
(i)
h and α

(j)
h (β(i)

h and β
(j)
h ), i.e. an overlap be-

tween modes within the entangling (readout) pulse as demon-
strated in (5.93). This leads to spurious intra-pulse correlations.

In the remaining subsections, I will show for simulated data (Sec-
tion 5.11.2) and measurement data (Section 5.11.3) that both types of
spurious correlations, inter-pulse and intra-pulse, can cause unphysi-
cality and diverging entanglement values. I conclude in Section 5.11.4
by discussing some possible solutions.

5.11.2 Simulations

Let us explore the effect of a non-flat detector response in single-
mode simulations, by comparing simulations with and without the
low-pass filter. Note that, in the simulations presented below, I do
not use the ideal first-order low pass used as a toy example in Sec-
tion 5.11.1. Instead, I use a realistic model (deduced from shot noise
measurements) of the actual 12 MHz low-pass filter employed in the
experiment. This filter rolls off much more steeply than the first-order
low pass considered earlier.

5.11.2.1 Spurious inter-pulse correlations

First, let us look at a single-sideband evaluation of single-mode sim-
ulations. In this case, we deal with only one light mode per pulse.
Hence, there can be no intra-pulse correlations, but only (inter-pulse)
correlations between the entangling and the readout pulse. In this
sense, it is the simplest possible scenario. The results are presented
in Figure 5.22.48 Unfortunately, even in this simplest possible case,48 Figure 5.24 shows the

same data, but evaluated
using a two-sideband

evaluation. Interestingly,
this exacerbates the

problem quite drastically.

the presence of the low pass filter significantly changes the detected
entanglement.

Can we really blame the difference in entanglement between the
two different simulations on the low-pass filter? The analytical toy
model of Section 5.11.1 suggested that the effect of the filter should
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Figure 5.22. Parameters:
single-sideband eval.,
without optical noise,
ωm = 2π × 920 kHz,
κ ' 2.73×ωm,
g0 ' 7.1× 10−5 ×ωm,
g ' 0.30×ωm,
Q = 5× 107,
T = 5 K,C ' 14.9.

Logarithmic negativity EN versus pulse width Γ from
single-mode simulations with flat and frequency-dependent detector
response. The data was evaluated using a single-sideband evaluation.
The simulation assuming a flat detector response (green solid line) and
the one assuming a 12 MHz low-pass filter (red solid line) yield simi-
lar entanglement values for small pulse widths, but diverge more and
more with increasing pulse widths. All pulse widths yield physical
covariance matrices (circle markers).

become more problematic with increasing pulse widths. And, in- deviation grows with
increasing pulse widthdeed, the difference in entanglement between the simulations with

and without the filter becomes larger with increasing pulse width.
The “smoking gun” that the difference in entanglement is due to

the filter, however, is presented in Figure 5.23. The plot shows the
absolute value of the covariance between different pulse quadratures
for simulated shot noise measurements. Ideally, these covariances should
all be zero. But in practice, due to limited statistics, we will always correlations between shot

noise quadratures due to
limited statistics

observe a small non-zero covariance. For small pulse widths Γ, the
measured covariances are indeed non-zero but small, in line with the
assumption of statistical fluctuations. Furthermore, there is no obvi-
ous systematic difference for small pulse widths between the simula-
tion with and without the low-pass filter.

For large pulse widths, however, a clear difference between the sim-
ulations with and without the filter appears. For the simulation with-
out the filter, all covariances remain small. For the simulation includ-
ing the filter, however, some inter-pulse covariances (between the Q-
and X− as well as the P− and Y−quadratures) grow far beyond what spurious inter-pulse

correlations grow with
pulse width

would be reasonably expected on purely statistical grounds. This be-
havior is consistent with the results of Section 5.11.1 which predict a
large effective overlap of the readout and entangling pulse for large
pulse widths.
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Covariances of pulse quadratures
for shot noise data

QP
QX
QY
PX
PY
XY

non-flat
det. response

QP 
QX
QY
PX
PY
XY

flat detector
response

Figure 5.23.Parameters:
as in Figure 5.22.

Absolute value of covariances between pulse quadratures
for simulated shot noise measurements (with and without a frequency-
dependent detector response) as a function of pulse width Γ. For small
pulse widths, the simulation with the detector low pass (solid lines)
yields similar correlations as the simulation with a flat detector re-
sponse (dashed lines). For large pulse widths, however, the simulation
assuming a non-flat detector response yields very strong inter-pulse
correlations (between Q and X, and between P and Y), while the corre-
lations between quadratures belonging to the same pulse (Q and P, as
well as X and Y) remain small.

Note that already at Γ ' 1 MHz, the spurious off-diagonal correla-
tions for simulated shot noise measurements are on the order of 0.05,
i.e. a tenth of the theoretically expected shot noise variance. This
means that already at these pulse widths, the entangling and the
readout mode have a very significant effective overlap. Thus, entan-implications for

entanglement glement values calculated for these pulse widths must definitely not
be trusted. Figure 5.22 showed, however, that even for much smaller
pulse widths, the measured entanglement starts to change signifi-
cantly due to the presence of the filter. This suggests that even much
smaller effective mode overlaps (of 1 % or less)—which we cannot dis-
tinguish from purely statistical correlations given our limited sample
sizes—can influence the amount of entanglement inferred from the
data.

5.11.2.2 Spurious intra-pulse correlations

What happens if the filter also introduces spurious intra-pulse corre-
lations? This is explored in Figure 5.24 which shows results for the
simulations presented above in Figure 5.22, but this time evaluated
using a two-sideband evaluation. Hence, in this case we analyze
two light modes per pulse. Ideally, these light modes are orthogo-
nal and, therefore, constitute a legitimate set of quantum modes. But
(5.93) showed that also the modes within a single pulse can become
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Figure 5.24. Parameters:
two-sideband eval.,
rest as in Figure 5.22.

Logarithmic negativity EN versus pulse width Γ from
single-mode simulations with and without a frequency-dependent de-
tector response. The simulation assuming a flat detector response
(green solid line) yields physical covariance matrices for all pulse
widths considered here. The simulation using a non-flat detector re-
sponse (red solid line) coincides reasonably well for very small pulse
widths, but diverges drastically from the ideal curve for Γ > 200 kHz,
yielding entanglement values which are much too large. It also fails to
deliver physical covariance matrices for pulse widths Γ > 100 kHz.

effectively non-orthogonal due to filtering, which can lead to unphys-
icality and deviations of the measured entanglement from the true
value.

In fact, the difference in entanglement between the simulations
with and without the filter are much more drastic for the two-sideband
(Figure 5.24) than for the single-sideband evaluation (Figure 5.24). In unphysicality and

drastically different
entanglement values for
large pulse widths

addition, the simulation including the low-pass filter does not yield
physical covariance matrices for pulse widths Γ > 100 kHz, for the
two-sideband evaluation.

Figure 5.25 shows that the filter does indeed lead to strong spurious
correlations between some quadratures belonging to the same pulse. strong intra-pulse

correlations for
large pulse widths

This is in addition to the spurious inter-pulse correlations which were
already present in the single-sideband evaluation (see Figure 5.23).
These spurious correlations demonstrate unambiguously that the cor-
responding modes are effectively not orthogonal. It is plausible that
the combined effect of the spurious correlations between the pulses
and within a single pulse explains the unphysicalities and strongly
differing entanglement values at large pulse widths in the presence
of the filter.
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Covariances of pulse quadratures
for shot noise data

non-flat
det. response

flat detector
response

Q1P1

Q1Q2

Q1P2

X1Y1

X1X2

X1Y2

Q1P1

Q1Q2

Q1P2

X1Y1

X1X2

X1Y2

Figure 5.25.Parameters:
as in Figure 5.24.

Absolute value of intra-pulse covariances between some
of the pulse quadratures for simulated shot noise measurements (with
and without frequency-dependent detector response) as a function of
pulse width Γ. For small pulse widths, the simulation with the detector
low pass (solid lines) yields similar correlations as the simulation with
a flat detector response (dashed lines). For large pulse widths, how-
ever, the simulation assuming a non-flat detector response yields much
stronger intra-pulse correlations (compared to the simulation with a
flat detector response) for some pairs of quadratures, chiefly for the
pairs Q1 and P2 and X1 and Y2.

5.11.3 Experimental results

Let us finally look at experimental data recorded at liquid Helium
temperatures T ' 5 K.49 The mechanical element was a commercial49 An estimate based on a

low-temperature sensor
placed close to the

membrane. We do not
have a direct measurement

of the mode temperature
for this data set.

square SiN membrane (by Norcada) with a fundamental frequency
ω1 ' 675 kHz, which we drove with an optical input power of Pin '
50 µW. Figure 5.26 shows the result of a two-sideband evaluation
of this data taking into account 47 mechanical modes. The result-
ing entanglement curve shows some resemblance to the red curve in
Figure 5.24 which resulted from a single-mode simulation taking the
non-flat detector response into account. In particular, it also featuresunphysicality and large

entanglement for large Γ unphysicality and implausibly large entanglement values for large
pulse widths.

To better understand the origin of the diverging entanglement val-
ues and unphysicalities in our experimental data, we can again look
for potential spurious correlations introduced by the non-flat detector
response. Figure 5.27 looks again at the absolute value of covariancesspurious correlations due

to non-flat detector
response?

between different pulse quadratures for shot noise data (in the spirit
of Figure 5.23 and Figure 5.25). But, given that each covariance matrix
has now 376× 376 entries, it does not make sense anymore to look
at individual covariances. Instead, the maximum, mean, median and
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Figure 5.26. Parameters:
two-sideband eval.
using 47 modes,
ω1 ' 675 kHz,
ω2 ' 1.07 MHz, . . .
T ' 5 K,
Pin ' 50 µW.

Logarithmic negativity EN versus pulse width Γ for pre-
liminary experimental data recorded using a commercial SiN mem-
brane at liquid Helium temperatures with an optical input power of
Pin ' 50 µW. The lower panel is a zoom-in of the upper panel. For
small pulse widths Γ < 30 kHz, the evaluation yields physical covari-
ance matrices (circle markers); the covariance matrices for all other
pulse widths are unphysical. There is a strong divergence of the mea-
sured entanglement starting roughly at Γ ' 120 kHz.
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.

Figure 5.27.Same evaluation as in
Figure 5.26, applied to

experimentally
recorded shot noise.

Spurious correlations between different pulse quadratures
for experimentally recorded shot noise data (upper panel). Plotted are
the maximum, mean, median and standard deviation of the absolute
values of the covariances between different pulse quadratures calcu-
lated using measured shot noise. The lower panel shows, as a visual
reference, the inferred entanglement for Pin ' 50 µW (see Figure 5.26).

standard deviation of the covariances are plotted to characterize the
typical size and range of these unwanted correlations.

Recall that, ideally, these covariances between different quadratures
for shot noise data should be zero up to statistical fluctuations; in par-
ticular, there should be no systematic dependence on the pulse width
Γ. Unfortunately, Figure 5.27 paints a very different picture. There issystematic growth of

spurious correlations with
increasing pulse width

a clear systematic growth of correlations with increasing pulse width.
For the largest pulse width, the maximum of these off-diagonal corre-
lations for the shot noise measurements becomes comparable in size
to the shot noise variance (=1/2). This means that, for these largest
pulse widths, some of the analyzed modes—instead of being orthog-
onal—are effectively almost collinear.

5.11.4 Possible solutions

The frequency dependence of our detectors turned out to be serious
problem for our experiment. Recall the basic “ingredients” for this
problem:
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1. Short mechanical coherence times on the order of µs. This re-
quires us to use pulses which are broad in frequency space (on
the order of 100 kHz). It also prevent us from introducing long
inter-pulse delays.

2. A detector response which is not flat in the frequency windows
of interest—windows of some 100 kHz width around the me-
chanical resonances.

3. As an exacerbating factor: The necessity to analyze the contri-
bution of several closely spaced mechanical modes.

None of these challenges are unique to our experiment. Ideas to
tackle this issue might therefore be applicable to a wider range of
experiments. Let me very briefly sketch some potential “lines of at-
tack”.

5.11.4.1 Improvements in the experiment

In the experiment, there are two obvious knobs for improvements—the
detectors themselves and the mechanical coherence times. Regarding
the detectors, we could push their cut-off frequencies further away
from the mechanical resonances. In our case, this would require new improving detection

photodiodes, as well as changes to locking electronics and electro-
optics. The reason for the latter is the following: The 12 MHz low-
pass filter is necessary to prevent a strong modulation at 20 MHz
(required for locking the optomechanical cavity) from saturating our
AD-cards. Shifting this low-pass filter to higher frequencies therefore
also requires shifting the modulation tone to higher frequencies.

Alternatively, we can try to increase mechanical coherence times. increasing coherence times

A factor of ten could plausibly be gained by moving the experiment
from a liquid Helium flow cryostat to a dilution refrigerator. By lower-
ing decoherence by a factor of ten, the optimal pulse widths will also
be shifted downwards by a factor of ten. This would help because,
as discussed in the previous sections, the non-flat detector response
matters less for pulses which are narrower in frequency space.

5.11.4.2 Improvements in post-processing

A different way of counteracting the frequency-dependent effect of
the detectors by modeling the effect of the detectors and defining
a filter to undo the effect of the detectors. Such an “inverse filter” “undoing” the

frequency-dependent
response

(undoing the effect of the frequency-dependent detection) could be
applied directly to the raw data and should yield the data we would
have measured for an ideal detector.50 This is the route we are cur- 50 Alternatively, such a

correction step could be
incorporated in the
definition of the pulse
modes.

rently exploring. The main difficulty here is to obtain model of the
detector response which is sufficiently accurate such that we can trust
any entanglement we might detect.
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Alternatively, we could use the fact that not all mechanical modes
need to be taken into account in the evaluation (as demonstrated us-post-selecting a subset of

pulse modes ing simulations in Section 5.7.2.1). Maybe there are subset of modes
which are not so sensitive to the frequency-dependence of the detec-
tion and still show entanglement? This idea seems to work in simu-
lations (for certain parameters), but has not yet allowed us to extract
reliable entanglement curves from the experimental data.

The extreme case of the above idea is when only a single mechani-
cal mode needs to be taken into account. This happens if the mechani-
cal coherence time is so large, and correspondingly the optimal pulse
width so small, that the overlap between neighboring pulse modes
is negligible. In this case, we can detect entanglement by analyzing
only a single mechanical mode. If, in addition, we analyze only aeffective single-mode case

plus inter-pulse delays single optical sideband per pulse, the frequency-dependent detection
can only cause spurious correlations in between the pulses. But, for
sufficiently high coherence times, these inter-pulse correlations can
be eliminated by a sufficiently long delay in between the two pulses
(as discussed in Section 5.10).

5.12 conclusion

In this chapter, I have systematically analyzed the feasibility of a
novel entanglement detection protocol for cavity optomechanical sys-
tems, referred to as the pulsed-continuous protocol. For suitable ex-
perimental parameters, this protocol detects entanglement between
different light modes in a laser beam reflected from an optomechan-
ical cavity. The pulsed-continuous entanglement detection protocol
offers two main advantages compared to the pulsed protocol pro-
posed by [Hof+11] and implemented by [Pal+13b]. First, it is exper-main advantages for the

pulsed-continuous
protocol

imentally relatively simple since it does not require active pulsing
but works for an optomechanical cavity which is driven continuously
with a resonant or moderately red-detuned beam. Second, the pulsed
light modes whose correlations are analyzed are only defined in post-
processing. In principle, this allows a more systematic analysis of
how entanglement is shared among different modes of the reflected
light field.

The main objective of this chapter was to demonstrate, using exten-
sive computer simulations, that this protocol can detect optomechan-
ically induced entanglement for realistic experimental parameters. Infeasibility of entanglement

detection in the presence of
laser noise and multiple

mechanical modes

particular, I demonstrated that the residual classical laser noise in our
experiment does not prevent entanglement generation and detection.
More importantly, I have shown that this protocol is well adapted to
optomechanical systems with multiple significantly interacting me-
chanical modes (such as membrane-in-the-middle cavities).
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In the course of this analysis, also the challenges have become quite
clear. One challenge is that the protocol requires large amounts of raw main challenges for the

pulsed-continuous
protocol

data (on the order of several tens of gigabytes) and is computationally
expensive, if the number of analyzed modes becomes large. This
makes a systematic analysis of the correlations among a large number
of different light modes difficult in practice. Another challenge, and
the main current roadblock in our experiment, is the sensitivity of the
protocol to the frequency-dependence of the detectors (for current
experimental parameters). Different solutions to this problem have
been sketched in the previous section and are currently investigated.

The most important take away message from this study, which
generalizes beyond this particular protocol, is the following. The take-away message

presence of multiple significantly interacting and closely spaced me-
chanical modes can prevent the observation of optomechanically in-
duced quantum correlations in the reflected light field. But such
quantum correlations can be observed by suitably extending the set
of light modes to be analyzed. Extending the correlation analysis to a
larger number of light modes is particularly convenient in the pulsed-
continuous protocol, in which the light modes are defined entirely in
post-processing.
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A
N O TAT I O N

a.1 general

symbol / eqn. meaning

x Scalar variable

x [bold face] Column vector

σ, Σ, A etc. [bold face] Matrix

A ≡ B A is defined as B

A !
= B (A

!
> B,...) A must be equal to (larger than,...) B

|Σ| = det Σ Determinant of matrix Σ

δij =

1 i = j

0 i 6= j
Kronecker delta

δ (t) =

∞ t = 0

0 t 6= 0
, s.th.

Dirac delta distribution∫ +∞

−∞
f (t) δ(t− t0)dt = f (t0)

Θ (t) =

1 t ≥ 0

0 t < 0
Heaviside theta function

bxc ≡ max {n ∈ Z|n ≤ x} Floor of x

N0, N Natural numbers with / without zero

Z, R, C Whole / real / complex numbers

Table A.1. General typographic conventions and definitions of some
standard functions and sets.
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a.2 quantum mechanics

symbol / eqn. meaning

x̂ (x̂) Scalar (vector-valued) quantum operator[
â, b̂
]
≡ âb̂− b̂â Commutator of â and b̂{

â, b̂
}
≡ âb̂ + b̂â Anti-commutator of â and b̂[

b̂, b̂†
]
= 1 Canonical commutator of mode operators b̂, b̂†

q̂ =
(

b̂ + b̂†
)

/
√

2 Position / amplitude quadrature

p̂ =
(

b̂− b̂†
)

/i
√

2 Momentum / phase quadrature

[q̂, p̂] = i Canonical commutator of quadratures q̂, p̂

ρ Quantum state (in general, mixed)

〈Ô〉 ≡ tr
(
ρÔ
)

Expectation value of operator Ô in state ρ

σ2
q̂ ≡

〈
0
∣∣ q̂2

∣∣ 0
〉
= 1

2 Ground state momentum variance

σ2
p̂ ≡

〈
0
∣∣ p̂2

∣∣ 0
〉
= 1

2 Ground state position variance

σq̂σp̂ ≥ 1/2 Heisenberg uncertainty relation

R̂ Vector of quadrature operators

σ ≡ 〈
{
R̂, R̂T

}
〉

Ensemble covariance matrix (CM)
− 〈R̂〉 〈R̂T〉

σ(PT) Partially transposed CM

σ̃ Sample CM of measured pulse quadratures

Table A.2. Notation and definitions related to quantum mechanics.
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a.3 optomechanics

symbol / eqn. meaning

q0 ≡
√

h̄/2mωm, Ground state uncertainties (in SI-units)
p0 = mωmq0 of position and momentum

ωm Mechanical frequency

γm Mechanical linewidth

Q ≡ ωm/γm, Mechanical quality factor

ωc Resonance frequency of optomechanical cavity

ωl Frequency of driving laser

∆ ≡ ωl −ωc Detuning of laser with respect to OM-cavity

κ Cavity HWHM

κ1 Cavity linewidth due to input coupler

αin
1 Mean amplitude of driving laser field

α = 2κ1
κ2+∆2 αin

1 Mean amplitude of intra-cavity field

g0 Single-photon coupling

g ≡
√

2|α|g0 Linearized optomechanical coupling

Table A.3. Conventions and formulas regarding optomechanics.
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a.4 statistics and state estimation

symbol / eqn. meaning

x (x) Scalar (vector-valued) random variable

x̂ (x̂) Estimate of x (x)

P (x; p1, . . . , pn)
Prob. distribution P for random var. x
parametrized by p1, . . . , pn

N
(

x; µx, σ2) ≡ Normal distribution of x
1√

2πσ2
x

exp
(
− (x−µx)2

2 σ2
x

)
with mean µx and variance σ2

N (x; m, Σ) ≡ Multivariate normal distribution of x
1√

2π|Σ|
exp

(
−x′TΣ−1x′/2

)
, with mean m and covariance matrix Σ

with x′ ≡ x−m.

x ∼ P (x; p1, . . . , pn) x is distributed according to P

{xi}i=1,...N Measurement sample of random var. x

xi ≡ 1
N ∑N

i=1 f (xi) Sample mean of f (x)

E [ f (x)] ≡ Ensemble mean of a function f (x)∫
R

f (x)P (x; p1, . . . , pn)dx with respect to distribution P

Table A.4. Conventions regarding statistics and state estimation.

Note that, for brevity, I often talk about “probabilities” when we are
actually dealing with probability densities. Also, I use the same sym-
bols to denote a random variable and its value at a specific time. The
intended meaning should be clear from the context.

a.4.1 Calculation rules for Gaussian distributions

The product of two Gaussian distributions is proportional to another
Gaussian [P+08, sec. 8.1.8]:product of Gaussians

N (x; m1, Σ1)×N (x; m2, Σ2) ∝ N (x; m, Σ), (A.1)

Σ−1 = Σ−1
1 + Σ−1

2 , (A.2)

m = Σ
(

Σ−1
1 m1 + Σ−1

2 m2

)
. (A.3)

To derive the Kalman filter, I need to rewrite a Gaussian distribu-
tion N (y; Cx, V) of a variable y which depends linearly on another
variable x as a distribution of x. In this context, the matrix C will
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be the so-called measurement matrix relating the system state x to the measurement matrices &
inversion of distributionsmeasured output y. C satisfies two conditions in our case:

1. C is a m× n-matrix with m (number of measurement variables)
smaller than n (number of state variables).

2. I assume that all our measurement variables are independent,
such that all rows of C are linearly independent. Hence, C has
full rank.

Under these conditions—even though we cannot directly invert C to
rewrite N (y; Cx, V) as a distribution of x—we can use the “right

pseudoinverse” CT
(

CCT
)−1

of C [Ste94, pp. 50-51] to obtain right pseudoinverse

N (y; Cx, V) ∝ N
(
x; CT

(
CCT

)−1
y,
(

CTV−1C
)−1

)
. (A.4)
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a.5 fourier analysis and noise power

symbol / eqn. meaning

x (t) Random signal

ẋ (t) ≡ ∂x(t)
∂t Time derivative of x (t)

x̃ (Ω) ≡
∫ +∞

−∞
x (t) e−iΩtdt Fourier transform of x (t)

x (t) ≡
∫ +∞

−∞
x̃ (Ω) e+iΩt dΩ

2π Inverse Fourier transform of x̃ (Ω)

˜̇x(Ω) = iΩx̃(Ω) Time derivative in Fourier domain

Gxx (τ) ≡ E [x (t) x (t + τ)]
Autocorrelation function (ACF)
of random signal x (t)

Sxx(Ω) =
∫ +∞

−∞
Gxx (τ) e−iΩτdτ

Two-sided noise power
spectral density NPS of x (t)

Sx(Ω) ≡ 2× Sxx(Ω) One-sided NPS of x (t)

S(αx)(αx)(Ω) = α2Sxx(Ω)
Scaling of NPS with constant α

Sαx(Ω) = α2Sx(Ω)

Sẋẋ(Ω) = Ω2Sxx(Ω)
NPS of the time derivate ẋ ≡ ∂x(t)

∂tSẋ(Ω) = Ω2Sx(Ω)

Gxx (τ) = αδ(τ) ACF of a white-noise process x (t)

Sxx(Ω) = α NPS for a white-noise process x (t)

E
[
x2(t)

]
=
∫ ∞
−∞ Sxx(Ω)dΩ

2π Variance from NPS
=
∫ ∞

0 Sx(Ω)dΩ
2π

Table A.5. Notation and formulas regarding Fourier analysis and noise
power spectral densities etc. Following the definitions and notation in
[Cle+10] and [Wil12, sec.2.1].

Note that writing down the integrals defining Fourier and inverse
Fourier transformations in Table A.5 does not guarantee their exis-
tence. Note also that the definition for the NPS relies on the Wiener–Khinchin
theorem [Cle+10, eq. (A4)] which assumes wide-sense stationarity.
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Below, I provide more information on the laser noise measurements:
Some additional plots of the filtered amplitude noise (Section B.1)
and frequency noise (Section B.2), as well as a detailed explanation of
how the frequency measurements were obtained (Section B.3).

b.1 amplitude noise

b.1.1 Single-pass filtering

Figure B.1 shows the classical amplitude noise of the laser beam after noise suppression
at high frequenciesa single pass through the filter cavity in low-finesse and high-finesse

mode. The filter cavity reduces classical amplitude noise for sideband
frequencies above 200 kHz (100 kHz) for the low-finesse (high-finesse)
mode. Below 100 kHz, however, the filter cavity increases classical
amplitude noise, probably because of an unstable lock of the filter increased noise

at low frequenciescavity to the laser at low sideband frequencies. An unstable lock
could cause additional amplitude noise in two different ways:

1. Whenever the laser is not exactly resonant with filter cavity,
classical frequency noise of the laser is converted to amplitude
noise. The induced amplitude noise has the same spectral char-
acteristics as the classical frequency noise, which increases strongly
towards low sideband frequencies.

2. Even without classical frequency noise, a fluctuating detuning
leads to fluctuations in the transmitted intensity, hence ampli-
tude noise. If the fluctuations of the detuning are stronger at
low frequencies (which they usually are), so are the fluctuations
of amplitude.

Note that the magnitude of both effects depends strongly on the mean
detuning. For zero mean detuning, both effects are zero to first order
in the detuning—for non-zero mean detuning, they are not.

I have not explored the added low-frequency noise further, because
our optomechanical devices have mechanical frequencies of at least
400 kHz and noise below 100 kHz is therefore not an issue for us (this
is confirmed by simulations; see Section 5.4.2.2). It is highly relevant, relevant for optical

levitationhowever, for experiments with smaller mechanical frequencies such
as optical levitation experiments in which trap frequencies are typ-
ically on the order of 100 kHz. For such experiments, it would be
interesting to estimate the amount of low-frequency amplitude noise

165



166 noise measurements

105 106 107

Frequency [Hz]

−40

−20

0

20

40

C
la

ss
ic

al
am

pl
it

ud
e

no
is

e
[d

B
ov

er
sh

ot
no

is
e

at
1m

W
]

Single pass
Unfiltered
Low finesse
High finesse

Figure B.1. Classical amplitude noise after single-pass filtering for the
low finesse (blue) and high finesse filter cavity (green), as well as for
the unfiltered laser (gray). Below 100 kHz, filtering increases classical
amplitude noise, probably due to an unstable lock of the filter cavity to
the laser.

added by the two mechanisms discussed above and compare it to the
measurements.

b.1.2 Double-pass filtering

Figure B.2 shows the classical amplitude noise after double pass filter-
ing. The main features—noise suppression at high frequencies and
added noise at low frequencies—are similar to single-pass filtering.
After double-pass filtering in high-finesse (low-finesse) mode, the
beam is shot noise limited above 200 kHz (1 MHz) for 1 mW optical
power.

Figure B.3 shows the measured and expected noise suppression
for double pass filtering. The expected suppression for double-pass
filtering is the square of the suppression for single-pass filtering and
depends only on the filter cavity linewidth κFC. The linewidth was
derived from the measured single-pass suppressions (see Figure 3.4),
yielding κFC ' 2π× 650 kHz (2π× 48 kHz ) for the low-finesse (high-
finesse) filter cavity.

For the low-finesse mode, expected and measured noise suppres-
sion agree well at high frequencies, which confirms that the doublegood fit of expected and

observed suppression in
low-finesse mode...

pass filter does indeed work as expected. The deviation at lower fre-
quencies is likely due to an unstable lock of the filter cavity to the
laser, as discussed in Section B.1.1.

For the high-finesse mode, however, the measured noise suppres-
sion is much smaller than expected. At low frequencies (< 150 kHz),...but clear deviation in

high-finesse mode
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Figure B.2. Classical amplitude noise after double-pass filtering using
the low-finesse (blue) and high-finesse filter cavity (green). For compar-
ison, the unfiltered noise is shown in gray. Above 200 kHz (100 kHz),
classical amplitude noise is reduced by low-finesse (high-finesse) filter-
ing. As in the single-pass case, the filter cavity adds low-frequency
noise (below 100 kHz).
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Figure B.3. Amplitude noise suppression due to double-pass filtering
with the low finesse (blue) and high finesse (green) filter cavity. Mea-
surements are shown in light colors, theory in dark. As in the single-
pass case (Figure 3.4), the measured noise suppression deviates from
the expectation at low frequencies (below 150 kHz), likely due to an
unstable filter cavity lock (see Section 3.1.3.3). The deviation of the
measured suppression for the double-pass in high-finesse mode above
150 kHz is currently not understood.
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this is likely again due to an unstable filter cavity lock (compare Fig-
ure 3.3 which shows that low frequency amplitude noise for double-
pass and single-pass filtering has very similar spectral characteristics,
both in low-finesse and high-finesse mode). For frequencies above
150 kHz, however, the measured noise level itself (see Figure B.2),
shows a frequency-dependence which is clearly different from the de-
pendence below 150 kHz. This suggests that deviations from the ex-
pected suppression at these higher frequencies have a different cause.

Note that the deviation cannot be explained by the measurementpossible explanations for
deviations from expected

suppression
noise floor: For frequencies between 150 kHz and 1 MHz, we are com-
fortably above the measurement noise floor; Figure B.2 shows that the
measurement noise floor is at less than −20 dB, which is only reached
at frequencies above 1 MHz in the high-finesse double-pass measure-
ment. Possible explanations for the added amplitude noise might be:

• Air density fluctuations along the beam path inside the filter
cavity (the filter cavity is currently not operated in vacuum)

• Backscattering from the intra-cavity mode which is pumped
on the first pass into the (counter-propagating) mode which is
pumped on the second pass (in Figure 3.1: From the mode in-
dicated by red to the one indicated by yellow). Effectively, this
would mean the measured light is a mixture of single-pass and
double-pass-filtered light. At high sideband frequencies, the
noise would then eventually be dominated by the single-pass-
filtered component since its noise power decreases less rapidly
with increasing sideband frequency.

I chose to not investigate this further since, even with the suboptimal
noise suppression, the classical laser noise levels are sufficiently low
for generation and detection of entanglement. This is shown by sim-
ulations of our entanglement protocol which include a realistic laser
noise model based on our measurements (see Section 5.4.2.2).

b.2 frequency noise

Note that frequency noise was measured and independently cali-
brated for up to three different lengths of the delay fiber in the im-
balanced Mach–Zehnder-interferometer (see Section B.3.2). What is
plotted in the following are bands of uncertainty spanned by the min-
ima and maxima of these measurements at the given frequency.

b.2.1 Single-pass filtering

Figure B.4 shows the measured frequency noise after a single-pass
through the filter cavity in both low-finesse and high-finesse mode.
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Figure B.4. Classical frequency noise after single-pass filtering for the
low finesse (blue) and high finesse filter cavity (green). The frequency
noise of the unfiltered laser is shown in gray.

Figure B.5 shows the corresponding measured noise suppressions, to-
gether with the expected noise suppression, based on the filter cavity
linewidth κFC. κFC itself is derived from measured suppressions of
amplitude noise (see Figure 3.4).

For very low frequencies (below 10 kHz), there are large deviations
between measured and expected noise suppression due to strong and
broad noise peaks of unknown origin which seem to have shifted
in between the measurements for the different filter modes (see Fig-
ure B.4). At intermediate frequencies, below 2 MHz (200 kHz) for the
low-finesse (high-finesse) mode, the measurements agree reasonably
well with the expectations. At higher frequencies, there are clear de-
viations of the measured and expected suppression.

In the case of the high-finesse mode, this high-frequency deviation
of the measured suppression from the expectation is likely due to the
measurement noise floor. This is suggested by the fact that the single-
pass and double-pass measurements for high-finesse start to coincide
above 200 kHz (see Figure 3.6). Most likely, this measurement noise
floor is set by phase noise caused by the delay fiber. For the low-
finesse mode, I have no explanation for the observed excess frequency
noise.

b.2.2 Double-pass filtering

Figure B.6 shows the measured frequency noise after double-pass fil-
tering. Figure B.7 shows the corresponding measured noise suppres-
sions and contrasts them with the expectations. As in the case of the



170 noise measurements

104 105 106

Frequency [Hz]

−30

−20

−10

0

10

20

30

Fr
eq

ue
nc

y
no

is
e

su
pp

re
ss

io
n

[d
B]

Single pass
Low finesse
measurement
Theory (κFC =

2π × 650 kHz)

High finesse
measurement
Theory (κFC =

2π × 48 kHz)

Figure B.5. Frequency noise suppression after single-pass filtering with
the low finesse (blue) and high finesse (green) filter cavity. Measure-
ments and theory are shown in light and dark colors, respectively.

amplitude noise, expectations for the double-pass noise suppression
are derived from the measured filter cavity linewidth.

Qualitatively, the agreement of measured and expected noise sup-
pression is similar to the single-pass case: Poor at low frequencies
(below 20 kHz) due to strong and broad noise peaks which seem to
shift for different filter modes. Somewhat reasonable at intermedi-
ate frequencies. And poor again at high frequencies above 1 MHz
(200 kHz) for the low-finesse (high-finesse) mode. As in the single-
pass case, the high-frequency deviation in the high-finesse mode is
likely caused by the measurement noise floor (due to noise caused
by the delay fiber), whereas I have no reasonable explanation for the
high-frequency deviation in the low-finesse mode.

b.3 measuring frequency and phase noise

b.3.1 Relation of phase and frequency noise

The phase of a laser field is given by

φ (t) = ωlt + δφ (t) + φ0, (B.1)

where ωlt is the time evolution of the carrier, and δφ are small, zero-
mean fluctuations around it. φ0 is an arbitrary offset, which we are
not concerned with since we cannot measure it.

A direct measurement of the phase noise δφ (t) requires a phase-direct measurement of
phase noise reference at least as stable as the device under test. Since the filtered

laser we are using for the entanglement experiment is the most stable
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Figure B.6. Classical frequency noise after double-pass filtering for the
low finesse (blue) and high finesse filter cavity (green). The unfiltered
noise is shown in gray.
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Figure B.7. Frequency noise suppression after double-pass filtering
with the low finesse (blue) and high finesse (green) filter cavity. Mea-
surements and theory are shown in light and dark colors, respectively.
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source in our lab, we cannot perform a direct phase noise measure-
ment in this way. But we can infer the phase noise spectrum Sδφ

from the frequency noise Sδω, which can be measured as explained
in Section B.3.2.

The instantaneous optical frequency ω (t) is defined as the rate ofinstantaneous optical
frequency change of optical phase φ (t):

ω (t) ≡ φ̇ (t) = ωl + ˙δφ (t) ≡ ωl + δω (t) . (B.2)

ω (t) has a large DC component—the carrier frequency ωl—and small
fluctuations δω (t) around it.

In Fourier space, we have ˜δω (Ω) = iΩδ̃φ (Ω) and, therefore,

Sδω (Ω) = Ω2Sδφ (Ω) (B.3)

Since we are only ever interested in the fluctuations δω and δφ of the
frequency and phase, I drop the δ from here on, and denote them
simply by ω and φ, respectively.

b.3.2 Imbalanced Mach–Zehnder interferometer

Frequency noise Sω can be measured using a MZI,51 where one of the51 Imbalanced MZI:

PZT   

ΔL interferometer arms is prolonged with respect to the other by a fiber
of length ∆L (this measurement is also discussed in [Rie13]). The arm
length difference ∆L leads to a relative time delay for optical signals
between the two arms of

∆T =
∆L · n

c
, (B.4)

where n is the refractive index of the fiber.
The difference ∆P in optical power at the two outputs of the MZI

is proportional to the phase difference ∆φ (t) between the two arms.
This is true for small phase differences ∆φ � 1, which is enforced
experimentally by locking the interferometer to a relative phase dif-
ference ∆φ ' 0. For a laser with fluctuating instantaneous optical
frequency ω (t), the phase difference ∆φ (t) is time-dependent andphase difference =

optical frequency
integrated over
time period ∆T

given by the following integral over the instantaneous frequency:

∆P (t) ∝ ∆φ (t) =
∫ t+∆T

t
ω (τ) dτ. (B.5)
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To get the interferometer transfer function, we take the Fourier trans-
form of this equation and obtain

∆̃P (Ω) ∝
∫ +∞

−∞
dt e−iΩt

∫ t+∆T

t
ω (τ) dτ (B.6)

=
∫ +∞

−∞
dt e−iΩt

∫ ∆T

0
ω (t + τ) dτ (B.7)

=
∫ ∆T

0

(∫ +∞

−∞
dt e−iΩtω (t + τ)

)
dτ (B.8)

=
∫ ∆T

0

(
eiΩτω̃ (Ω)

)
dτ (B.9)

= i
1− eiΩ∆T

Ω
· ω̃ (Ω) (B.10)

=
(

eiΩ∆T − 1
)

φ̃ (Ω) , (B.11)

where the last line follows from ω̃ (Ω) = ˜̇φ (Ω) = iΩφ̃ (Ω).
Hence, the magnitude

∣∣Tφ→∆P (Ω)
∣∣ of the interferometer transfer

function from phase fluctuation φ at the input to power difference
∆P at the outputs is:∣∣Tφ→∆P (Ω)

∣∣ ≡ ∣∣∆̃P (Ω) /φ̃ (Ω)
∣∣ ∝

∣∣∣eiΩ∆T − 1
∣∣∣ ∝ |sin (Ω∆T/2)| .

(B.12)
We measure the optical power difference ∆P between the outputs of
the MZI with two photodetectors, which yields a difference current
∆I. The photodetectors themselves also have a frequency-dependent
response |TP→I (Ω)|, which we need to take into account. Hence, the
full measurement is described (up to dark noise and shot noise) by
the following transfer function:∣∣Tφ→∆I (Ω)

∣∣ = ∣∣Tφ→∆P (Ω)
∣∣× |T∆P→∆I (Ω)| (B.13)

∝ |sin(Ω∆T/2| × |TP→I (Ω)| . (B.14)

To accurately deduce the NPS of phase or frequency fluctuations
from the the measured NPS of the difference current S∆I (Ω), we
apply the following post-processing steps, which are explained in the
following sections:

1. Correct the measured spectra for dark and shot noise (Section B.3.3)

2. Correct for the detector response |T∆P→∆I (Ω)| (Section B.3.4)

3. Measure the actual delay ∆T of the interferometer and correct
for its transfer function

∣∣Tφ→∆P (Ω)
∣∣ ∝ |sin (Ω∆T/2)| (Section B.3.5).

4. Calibrate the resulting spectra (Section B.3.6)
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b.3.3 Dark noise and shot noise

The detector dark noise is easy to take care off: We measure it inde-
pendently and directly subtract it from all measured spectra. Other
significant sources of noise in this measurement are shot noise and
noise from differential fluctuations in the two arms of the interferom-
eter.

b.3.3.1 Different types of interferometer dark noise

Most of the noise sources which remain after subtraction of detector
dark noise can be measured directly by setting the arm length differ-
ence ∆L to close to zero (by removing the additional delay fiber). Let
us call the noise measured in this mode “∆L = 0-dark noise”. For“∆L = 0-dark noise”:

shot noise plus
dark noise from

interferometer instabilities

∆L ' 0, the sensitivity to external phase noise is negligible in the fre-
quency range of interest (confirmed by a direct measurement of the
interferometer transfer function). Hence, any remaining noise mea-
sured for ∆L ' 0 is not caused by classical phase noise of the laser,
and should therefore be subtracted. This remaining noise includes
both classical fluctuations of the relative phase due to interferometer
instabilities, as well as shot noise. Both of these contributions depend
only on the optical power at the detectors and not on the arm length
difference.

Note however, that there are also classical fluctuations of the rel-
ative phase between the interferometer arms which do depend on
the arm length difference: If we add a fiber of length L to the inter-
ferometer, we will measure additional noise due to fluctuations of
the effective optical path length inside the added fiber, which could
arise from temperature fluctuations (at very low frequencies) or from
acoustic fluctuations of the fiber length (at MHz frequencies). Let
us call this contribution to the measured noise “∆L 6= 0-dark noise”.“∆L 6= 0-dark noise”:

additional dark noise
from the delay fiber

This contribution cannot be measured as easily, since, once a fiber de-
lay has been introduced, the measurements are always dominated by
the phase noise of the laser. Therefore, I neglected the ∆L 6= 0-dark
noise in the measurements presented here, which should therefore
be considered upper limits on the phase and frequency noise of the
laser. Note that, for low levels of external phase noise, we are indeed
limited by a background noise the size of which is consistent with
rough expectations for the size of the ∆L 6= 0-dark noise. In future
measurements, it would therefore be desirable to independently mea-
sure this contribution and correct for it. For the sake of brevity, I will
from now on refer to ∆L = 0-dark noise, which includes shot noise
and noise arising from instabilities of the interferometer, simply as
“dark noise”, in the understanding that it does not account for all
dark noise contributions.
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b.3.3.2 Correcting for interferometer dark noise

Note that the measured dark noise S(∆L=0)
I (Ω) fluctuates slightly in subtracting the

“∆L = 0-dark noise”between different measurement runs. Such fluctuations could be due
to fluctuations of the interferometer visibility or of the optical pow-
ers in the interferometer arms. To account for these fluctuations, I
added a 160 kHz-calibration peak to all measurements by modulat-
ing a piezo-mounted mirror in one of the interferometer arms. This
peak completely dominates the external phase noise at 160 kHz; it can
therefore be used to rescale the measured dark noise to the level ap-
propriate for a given measurement. To correct a measured spectrum
SI (Ω), I first scale the measured dark noise S(∆L=0)

I (Ω) such that its
band power at 160 kHz matches the band power of the target spec-
trum SI (Ω) at 160 kHz. Then I subtract the scaled dark noise from
SI (Ω). The net effect is a perfect cancellation of the artificial dark
noise peak at 160 kHz and, hopefully, of most other dark noise contri-
butions. Note that, in fact, the band powers at 160 kHz fluctuated by
a only few percent in between different measurements.

Figure B.8 shows an example spectrum before and after dark noise
subtraction. We see that dark noise is not limiting the measurement
below 3 MHz. In the range from 4 to 16 MHz, ∆L = 0-dark noise
is, in fact, the limiting broadband noise. This is evidenced by the
fact that the zeros of the transfer function are well resolved in this
frequency range after dark noise subtraction, which shows that no
other noise source contributes significantly. Comparison with mea-
surements for other delays, however, reveals a rather broad noise
peak between 7.2 MHz and 8.2 MHz which is not due to ∆L = 0-
dark noise. Above 16 MHz, dark noise subtraction is not sufficient to
resolve the zeros of the transfer function. This implies that, at these
frequencies, other noise contributions—potentially due to the delay
fiber—are significant.

b.3.4 Detector response

I define the detector response as the magnitude of the transfer func-
tion from optical power P at the diode to photo-current I after all
filtering and amplification

|TP→I (Ω)| ≡
∣∣ Ĩ (Ω) /P̃ (Ω)

∣∣ . (B.15)

Shot noise is characterized by a flat power fluctuation spectrum, hence
for shot noise |P̃ (Ω) | = const. We can therefore determine the detec-
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Figure B.8.Measurement
parameters:
∆L ' 50 m,

∆T ' 0.24 µs,
free-running laser,

single pass through
high finesse filter cavity.

Example spectrum before (blue) and after (green) dark
noise subtraction. This measurement was done for a single pass
through the high finesse filter cavity. Zeros of the transmission func-
tions are at Ωn ' n × 2π × 4.1 MHz (n = 0, 1, . . .). Hence, the time
delay between the two interferometer arms is ∆T = 2π/Ω1 ' 0.24 µs.
With the nominal fiber delay of ∆L = 50 m, we obtain an effective re-
fractive index of the fiber of n = ∆T · c/∆L ' 1.46.

tor response from the NPS S(0)
I (Ω) for shot noise (which is measured

using the difference output of two balanced detectors:

|TP→I (Ω)| ∝
√

S(0)
I (Ω). (B.16)

The details are described in Figure B.9.

b.3.5 Interferometer response

The next step, after correcting for dark noise and the detector re-
sponse, is the correction for the transfer function (B.12) of the in-
terferometer. This transfer function can, in principle, be measured
directly by connecting a broadband fiber EOM (in the laser beammeasuring the

interferometer transfer
function

path before the interferometer) to the output of a network analyzer.
The fiber EOM produces a phase modulation of the input light. This
phase modulation is translated by the interferometer into intensity
fluctuations at the detectors. The measured intensity fluctuations are
then fed back into the network analyzer. By sweeping the modula-
tion frequency, we obtain a frequency dependent measurement of the
transfer function from modulation voltage at the fiber EOM to optical
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Figure B.9. Measurement
parameters:
Popt ' 15 mW for the
shot noise measurement

Measurement of the detector response: A shot noise mea-
surement (blue) is corrected for dark noise (green) yielding a cor-
rected shot noise spectrum (red). We smooth the corrected spectrum
for frequencies above 200 kHz, and extend the observed frequency-
dependence to frequencies below 200 kHz assuming a near-quadratic
roll-off (manually adjusted to yield a reasonable fit to the measurement)
to obtain the square |TP→I (Ω)|2 of the detector response (yellow). The
latter can then be used to correct measured spectra for the detector
response (by dividing them by |TP→I (Ω)|2).

power fluctuation at the output of the interferometer. Hence, we can
measure the product

|TV→∆P (Ω)| =
∣∣TV→φ (Ω)

∣∣× ∣∣Tφ→∆P (Ω)
∣∣ (B.17)

of the interferometer response∣∣Tφ→∆P (Ω)
∣∣ , (B.18)

and the response of the fiber EOM, defined as the magnitude of the
transfer function from modulation voltage V to phase modulation φ:∣∣TV→φ (Ω)

∣∣ ≡ ∣∣φ̃ (Ω) /Ṽ (Ω)
∣∣ . (B.19)

Unfortunately, the response
∣∣TV→φ (Ω)

∣∣ of the fiber EOM is not
known precisely. Therefore, we cannot infer the interferometer trans-
fer function (B.18) directly from the measured transfer function (B.17).
Instead we use the theory expression (B.12), which depends only on
the relative time delay ∆T of the interferometer arms. ∆T can, in ∆T from zeros of measured

transfer function
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Figure B.10.Measurement
parameters:
∆L ' 50 m,

∆T ' 0.24 µs,
free-running laser,

unfiltered.

Example spectra demonstrating the correction for the in-
terferometer transfer function. Before correction (blue), the measured
spectrum has zeros at Ωn ' n× 2π/∆T (for ∆T ' 0.24 µs, n = 0, 1, . . .)
as predicted by the interferometer transfer function (B.12). After the
correction (green, semi-transparent), these zeros disappear but at their
frequencies the noise power fluctuates wildly. In the next step, the mea-
surement values close to zeros of the transfer functions are excluded
and replaced by values obtained from measurements with a different
delay time ∆T (hence, different locations of the zeros).

turn, be inferred from the evenly spaced zeros Ωn (n = 1, 2, . . .) of the
measured transfer function (B.17):

∆T = n× 2π

Ωn
. (B.20)

b.3.5.1 Correction for interferometer transfer function

Figure B.10 shows an example trace before and after correcting for
the interferometer transfer function (B.12). Close to the zeros of thepoints of zero sensitivity

transfer function, the sensitivity of the measurement is close to zero.
This is reflected in wildly fluctuating noise power of the corrected
spectra at these frequencies.

In order to obtain reliable measurements at all frequencies, we must
therefore measure for different delay fiber lengths ∆L (i.e. different
delays ∆T). We chose to measure for ∆L ' 50 m, 53 m, and 100 m.
For each sideband frequency Ω of interest (10 kHz to 10 MHz), at
least one of these measurements has sufficiently non-zero sensitivity.
Therefore, we can cut the regions of low sensitivity from each mea-“stitching together”

measurements for different
delays ∆L

sured spectrum, stitch the three resulting spectra together, and obtain
a spectrum without any gaps caused by low sensitivity.
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Figure B.11. Measurement
parameters:
∆L ' 100 m,
∆T ' 0.52 µs.

Example measurement of the combined transfer function
of EOM plus interferometer (blue). From this, we obtain the theoretical
interferometer transfer function (green, semi-transparent) by estimat-
ing ∆T from the zeros of the measured transfer function. Dividing
the measured by the theoretically expected transfer function yields the
transfer function of the fiber EOM (red).

b.3.5.2 Fiber EOM response

The response of the fiber EOM
∣∣TV→φ (Ω)

∣∣ can be inferred from the inferring the response of
the fiber EOMcomparison of the measured interferometer transfer function (B.17)

to the theoretically expected one (B.12):∣∣TV→φ (Ω)
∣∣ = |TV→∆P (Ω)| /

∣∣Tφ→∆P (Ω)
∣∣ (B.21)

An example measurement and estimated EOM response is shown in
Figure B.11.

We perform the measurement of the transfer function |TV→∆P (Ω)|
and estimate (B.21) of the fiber EOM response before each noise mea-
surement (in particular, also for each different delay∆T) to ensure the
interferometer is functioning as desired. The standard deviation be- consistent estimates across

different measurementstween the resulting 18 different estimates of the fiber EOM response
is, on average across all frequencies, on the order of a percent. The
fact that we get highly consistent estimates for the fiber EOM re-
sponse for all measurements shows that the interferometer response
was, in fact, close to the theoretical expectation for each measurement.
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b.3.6 Calibration of phase noise spectra

The spectra which result from division by the interferometer transfer
function—let us denote them by Sφ̃—are proportional to the actual
phase noise spectra Sφ:

Sφ̃ = Sα·φ = α2 · Sφ, (B.22)

with an unknown calibration factor α. If we know the actual phase
noise power Sφ(νcal) for some frequency νcal, we can determine the
calibration factor α by comparing the expected phase noise power
Sφ(νcal) to the measured phase noise power Sφ̃(νcal):

α =
√

Sφ̃(νcal)/Sφ(νcal). (B.23)

We produce such a strong known phase modulation by inserting a
fiber EOM and driving it harmonically at νcal = 19.3 MHz with a
function generator (modulation depth 50 mVpp). The resulting phase
modulation Sφ(νcal) can be independently calibrated as follows.

b.3.6.1 Calibration of EOM phase modulation

Consider a mono-chromatic laser beam (frequency ωl) phase-modulated
at frequency ωcal = 2π · νcal with a peak phase deviation of β:

E (t) ∝ exp (iωlt + iβ sin (ωcalt))

= exp (iωlt) · exp (iβ sin (ωcalt)) . (B.24)

The last expression can be expressed as a sum of harmonics of sin (ωcalt)
using the Jacobi-Anger expansion [17]:

exp (iβ sin (θ)) =
∞

∑
n=−∞

Jn(β) exp (inθ) . (B.25)

This leads to

E (t) ∝ exp (iωlt) ·
∞

∑
n=−∞

Jn(β) exp (inωcalt)

=
∞

∑
n=−∞

Jn(β) exp (i (ωl + nωcal) t) ≡
∞

∑
n=−∞

En (t) , (B.26)

where Jn is the n-th Bessel function of the first kind. En is the field am-
plitude of the n-th sideband, the corresponding optical power is pro-
portional to |En|2. Hence, the phase modulation of angular frequency
ωcal adds optical side-bands at angular frequencies ωl± n ·ωcal whose
amplitude Jn(β) is determined by the peak modulation depth β of the
phase modulation. We can use (B.26) to infer the peak phase devia-
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tion β from the ratio of the amplitude of the first sideband to the phase modulation depth
from sideband amplitudeamplitude of the carrier.

We measure this ratio (call it r) by mixing the modulated beam
with an unmodulated laser with optical frequency ωLO (some GHz
away from ωl) on a beam splitter and detecting the beat note with a
fast photodetector. The resulting photocurrent is proportional to the measuring power in

optical sidebandssquare of the sum of the fields which gives a DC part proportional
to the optical power of the two beams and an AC part (“beat note”)
proportional to the product of the fields. The noise power spectrum
of the photocurrent I is therefore

SI(Ω) ∝
∞

∑
n=−∞

(Jn(β))2 δ (Ω− (∆ωl + n ·ωcal)) , (B.27)

where ∆ωl ≡ ωLO −ωl. We measure the band powers

BP0 ≡
∫

Ω'∆ωl

SI(Ω)dΩ (B.28)

BP1 ≡
∫

Ω'∆ωl+ωcal

SI(Ω)dΩ (B.29)

of the carrier contribution (at frequency ∆ωl) and of the first upper
sideband (at frequency ∆ωl + ωcal), respectively, we obtain the ratio r
of their field amplitudes

r =
√

BP1/BP0 = J1(β)/Jo(β), (B.30)

from which we can deduce β. Note that, for small phase modulations
β, r increases monotonically with β such that β can be uniquely deter-
mined. For our calibration peak, we extract a peak phase modulation peak phase modulation

depth of
β = δφpk = 9.86 mradpk. (B.31)

The band power of the calibration phase and frequency modulation
are therefore given by calibration band power∫

ν≈νcal

Sφ(ν)dν = δφ2
rms =

(
δφpk/

√
2
)2

(B.32)

= 4.86× 10−5 rad2 (B.33)∫
ν≈νcal

Sν(ν)dν = ν2
cal · δφ2

rms = 1.81× 1010 Hz2. (B.34)

Note that the calibration tone used for the phase noise measure-
ments was produced by a 50 mVpp-modulation at νcal = 19.3 MHz
using a function generator. We sweeped the modulation depth over
a wide range around the 50 mVpp using a network analyzer to ver-
ify that we are deeply in a regime of small phase modulation, where
measured sideband power is perfectly proportional to applied mod-
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ulation voltage. We also checked that the detector response was flat
enough in the measured frequency range by comparing the measured
values for the upper and lower sideband power. These should be
equal ideally and differed only slightly in the measurements (stan-
dard deviation from the mean less than 3 % for 9 different measure-
ments spanning more than two decades in modulation power). To
increase accuracy, we used the mean of upper and lower sideband
power to determine β.



C
P U L S E D - C O N T I N U O U S E N TA N G L E M E N T

c.1 definition of the logarithmic negativity

In this thesis, we quantify entanglement using the logarithmic neg-
ativity EN because it can be calculated straight-forwardly even for
multi-mode Gaussian states. For an N-mode covariance matrix σ

and a bipartition A ≡ {1, . . . M} and B ≡ {M + 1, . . . N} of the N
modes,52 the logarithmic negativity between A and B is defined as 52 In this thesis, I am only

interested in the
entanglement between the
entangling and the
readout pulse. This defines
the bipartition of interest.

follows [for details see e.g. AI07]: We first calculate the partially trans-
posed covariance matrix σ(PT), i.e. we transpose only the B-modes
(basically, changing the sign of the p-quadratures for all modes in B).
Next, we calculate the so-called symplectic spectrum

{
ν

(PT)
k

}
k=1,...,N

of the partially transposed covariance matrix σ(PT). Then, we define
the logarithmic negativity between A and B as follows [AI07, eq. 68]:

EN ≡

−∑k log
(

ν
(PT)
k /ν(0)

)
, for k : ν

(PT)
k < ν(0),

0, if all ν
(PT)
k ≥ ν(0),

(C.1)

where ν(0) is the shot noise variance (variance of a quadrature in a
coherent state; in our case, ν(0) = 1/2). If the state σ is entangled,
the partially transposed state σ(PT) is unphysical which implies that
at least one of the ν

(PT)
k drops below ν(0) [Sim00]. Hence, EN becomes

positive. If the state is separable, on the other hand, we have ν
(PT)
k ≥

ν(0) (for all k) and, therefore, EN = 0.
The latter, however, proves inconvenient in practice: Obtaining the

value 0 for all separable states is simply too uninformative. In prac-
tice, if the state is not entangled, we at least want to get a sense of
how far we are from entanglement. To this end, we modify the defini-
tion of the logarithmic negativity such that it yields different negative
values for different separable states. How to achieve this modified
definition, however, depends on the number of (light) modes: For
two light modes (hence, a single mechanical mode evaluated with
the single-sideband evaluation), there is a natural way to modify the
definition (Section C.1.1). For more than two light modes (multiple
mechanical modes and/or two-sideband evaluation), however, there
is no single natural modified definition: Which definition is chosen in
the multi-mode case is therefore a matter of convenience and depends
on the quantum states to be analyzed (Section C.1.2).

183
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c.1.1 Single-mode case

In the simplest case, we deal with only a single mechanical mode
and only one mechanical sideband per pulse. Hence, there are only
two (light) modes to be analyzed: The entangling mode centered on
the lower mechanical sideband and confined to times t < 0, and
the readout mode centered on the upper mechanical sideband and
confined to times t > 0. In this case, at most one of the partially
transposed symplectic eigenvalues ν

(PT)
k can drop below ν(0) [AI07,

eq. 69]. Therefore, (C.1) can be simplified to

EN ≡ max
(

0,− log
(

ν
(PT)
− /ν(0)

))
, (C.2)

where ν
(PT)
− is the smallest symplectic eigenvalue of the partially trans-

posed covariance matrix [AI07, eq. 82].
In this case, it is clear how to extend the definition of the logarith-

mic negativity in order to obtain different negative values for differ-
ent separable states. We simply define

EN ≡ − log
(

ν
(PT)
− /ν(0)

)
, (C.3)

irrespective of whether ν
(PT)
− < ν(0) or not.

For ν
(PT)
− < ν(0), the state is entangled and (C.3) yields the same

(positive) values as the standard definition. For ν
(PT)
− > ν(0), on the

other hand, the state is separable and (C.3) yields negative values
while the standard definition (C.1) yields 0.

c.1.2 Multi-mode case

If we take several mechanical modes into account in our evaluation
and/or if we consider a two-sideband evaluation, then the resulting
covariance matrix comprises more than two (light) modes. In this
case, an ambiguity arises when we try to modify the definition (C.1)
to allow for negative values for separable states in analogy to (C.3).

In the single-mode case, at most one of the ν
(PT)
k can drop below

the shot noise variance ν(0). This allows us to modify the definition
of the logarithmic negativity in a natural way: We simply let the loga-
rithmic negativity “track” ν

(PT)
− (the smallest symplectic eigenvalue of

the partially transposed covariance matrix), irrespective of whether
ν

(PT)
− < ν(0) or not.

For more than two light modes, however, there may be several ν
(PT)
k

for which ν
(PT)
k < ν(0). But, if several symplectic eigenvalues could

potentially contribute to entanglement: Which subset of symplectic
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eigenvalues should we track when no entanglement is present? I.e.,
what is the best choice for the index set K in the following definition?

EN ≡

−∑k log
(

ν
(PT)
k /ν(0)

)
, for k : ν

(PT)
k < ν(0),

−∑k∈K log
(

ν
(PT)
k /ν(0)

)
, if all ν

(PT)
k ≥ ν(0).

(C.4)

Assuming that the ν
(PT)
k are in ascending order, two reasonable defini-

tions could be

1. K = {1}, i.e. only the smallest symplectic eigenvalue is taken
into account.

2. K = {1, . . . , N/2}, with N the number of (light) modes. Since at
most N/2 of the ν

(PT)
k can be below the shot noise variance [AI07,

eq. 69], this means summing over all symplectic eigenvalues
which could potentially contribute to entanglement.

Since we are always interested in entanglement as a function of some
other parameter p (such as the pulse width Γ or the coupling g), a
reasonable requirement on our definition of EN is that EN should
be continuous across zero as a function of p for the quantum states
we are interested in. Continuity of EN (p) depends on the number
of symplectic eigenvalues which contribute to the entanglement (for
those values of p which yield entanglement): If only one symplectic
eigenvalue contributes, then definition 1 above will yield continuous
curves. If more than one symplectic eigenvalues contribute, then def-
inition 1 will not yield continuous curves but definition 2 or some
other definition might.

In our case, simulations show that only one symplectic eigenvalue
contributes. Hence, definition 1 is the most convenient choice for
us. Figure C.1 illustrates this for the case of a two-mode simulation.
Therefore, we define the logarithmic negativity as follows:

EN ≡

−∑k log
(

ν
(PT)
k /ν(0)

)
, for k : ν

(PT)
k < ν(0),

− log
(

ν
(PT)
− /ν(0)

)
, if all ν

(PT)
k ≥ ν(0).

(C.5)

where ν
(PT)
− is defined as the smallest symplectic eigenvalue of the

partially transposed state.

c.2 mode functions in the multi-mode case

As explained in Section 5.6, we need to ensure that all mode-functions
used in a multi-mode evaluation are orthonormal to each other. How-
ever, for any two mechanical mode frequencies ωm

(i) and ωm
(j), the
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Figure C.1.Parameters:
with optical noise,

ωm1 = 2π × 920 kHz,
ωm2 = 1.4×ωm1,

κ ' 2.73×ωm1,
g ' 0.30×ωm1,

Q = 5× 106,
T = 5 K.

Comparison of two different definitions of the logarithmic
negativity EN (discussed in the main text) in a two-mode simulation.
For pulse widths Γ for which entanglement is present, the two defini-
tions agree. If no entanglement is present, they differ markedly. Defini-
tion 1 (blue, diamond markers) relies on only the smallest symplectic
eigenvalue of the partially transposed covariance matrix and yields an
entanglement curve which is continuous across zero. Definition 2 (red,
circle markers) takes the smallest N/2 symplectic eigenvalues into ac-
count and yields discontinuous behavior across zero.

ideal mode functions α̃(i)(t) and α̃(j)(t) for the entangling pulse, de-
fined by

α̃(i)(t) ≡ exp (iωmit)× exp (Γit) (for t ≤ 0) , (C.6)

are not orthogonal to each other (and the same holds true for the
mode functions β̃(i)(t) and β̃(j)(t) of the readout pulse). Therefore, it is
clear that the orthonormalization procedure will introduce deviations
from the ideal mode shape (C.6).

Figure C.2 shows an example of two mode functions resulting from
the orthonormalization. These mode functions correspond to the two-mode functions in

time domain mode evaluation presented in Figure 5.6 (for the optimal pulse width
Γopt ' 40 kHz). The upper panel shows a mode function for the fun-
damental mode at ω1 = 2π × 920 kHz. This mode function is a com-
plex harmonic oscillation with an exponentially decaying envelope,
hence it has not changed due to the orthonormalization.

The lower panel shows the corresponding mode function for the
next higher-order mode at ω2 = 2π × 1.3 MHz. Clearly, the envelope
of the second mode function in the time domain is not a simple ex-
ponential decay anymore but is additionally modulated as a result of
the orthonormalization procedure. The envelope is now of the form
(1 + δ sin (ωmodt + φ))× exp (−Γit) with ωmod = ω2 −ω1.

Figure C.3 shows noise power spectra of the real and imaginary
part of these two mode functions. We see that, compared with mode
1, the mode shape for mode 2 in the frequency domain is slightly
altered as a result of the orthonormalization procedure (small bumpsmode functions in

frequency domain
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around ω1). Nevertheless, the noise power for both mode functions
is still strongly concentrated in a frequency interval of width Γ1/2 '
40 kHz around the central frequencies ω1 = 2π × 920 kHz and ω2 =

2π × 1.3 MHz, respectively. This is reassuring, because it means that
the mode functions continue to act as bandpass filters around the
mechanical frequency (as desired) even after the orthonormalization.

Figure C.2. Parameters:
ω1 = 2π × 920 kHz,
ω2 = 2π × 1.3 MHz,
Γ1/2 ' 40 kHz.

Readout mode functions in a two-mode evaluation. The
absolute value (red solid line) decays exponentially for mode 1 (upper
panel), while, for mode 2 (lower panel), the exponential decay is mod-
ulated due to the orthonormalization. The real and imaginary parts
(blue and green solid lines) oscillate at ω1 and ω2, respectively.

Figure C.3. Parameters as in
Figure C.2.

Noise power spectral densities of the real and imaginary
parts of the readout mode functions depicted in Figure C.2.
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Figure C.4.Parameters:
without optical noise,

ω1 = 2π × 920 kHz,
κ ' 2.73×ωm1,
g ' 0.37×ωm1,
Q = 15.8× 106,

T = 5 K;
for 2-mode eval.:

ω2 = 2π × 1.3 MHz.

Logarithmic negativity EN versus pulse width Γ for single-
and two-mode evaluations of a single-mode simulation. The central
frequency ω1 in the single-mode evaluation (red, dashed line) corre-
sponds to the mechanical frequency of the simulated mode. For the
two-mode evaluation (blue, solid line), a second mode function at fre-
quency ω2 has been added (ω2 does not correspond to any frequency
of the simulation). The two-mode evaluation always yields at least as
much entanglement as the single-mode evaluation (as expected) but
does not significantly improve the maximally detected entanglement.

c.3 can multimode evaluations hurt?

Can we “go wrong” with a multimode evaluation? That is: Can we
fail to detect entanglement because our evaluation assumes mechani-
cal modes which are not present in the system we are studying?

Let us consider the example of a single-mode simulation which has
(unnecessarily) been evaluated assuming two mechanical modes. Fig-
ure C.4 demonstrates that the two-mode evaluation “does not hurt”:
The two-mode evaluation yields values for the logarithmic negativity
which are equal to or larger than the ones obtained by the single-
mode evaluation. This is actually true in general because going from
a multimode evaluation to a single-mode evaluation corresponds to
tracing out (this is clear from the way the multimode evaluation is
defined; see Section 5.6). And tracing out can only decrease the en-
tanglement.

On the other hand, the maximum amount of entanglement which
can be extracted does not increase markedly by adding the second
mode in the evaluation. This can be understood as follows. Most
of the correlations created in this simulation are concentrated at side-
band frequencies which are very close to ±ω1 = ±2π× 920 kHz. Sig-
nals at these sideband frequencies are efficiently extracted by the first
mode in the evaluation. But they do not contribute much to the sig-
nal extracted by the second pulse mode (with central frequencies at
±ω2 = ±2π × 1.3 MHz).
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Note that the choice ω2 = 2π × 1.3 MHz in the two-mode evalua-
tion is completely arbitrary; it does not correspond to any frequency
in the simulation. But see Figure 5.6 for a corresponding plot where
the same evaluation has been applied to a simulation with two me-
chanical modes at ω1 = 2π × 920 kHz and ω2 = 2π × 1.3 MHz.

c.4 mode functions for the two-sideband evaluation

Figure C.5 depicts example mode functions for the two-sideband eval-
uation as defined in Section 5.8.1. The mode functions α̃(+)(t) and
β̃(−)(t) in the upper panel are the ones used in the “single-sideband
protocol” (discussed before Section 5.8). The mode functions α̃(−)(t)
and β̃(+)(t) in the lower panel are the ones added in the two-sideband
evaluation.

Ideally, α̃(−)(t) and β̃(+)(t) would be defined as the complex con-
jugates of α̃(+)(t) and β̃(−)(t). But, then they would not be orthonor-
mal. The orthonormalization introduces deviations from the ideal
mode shape in the form of modulations of the exponential envelope
of α̃(−)(t) and β̃(+)(t) (see lower panel). This is completely analo-
gous to the discussion in Section C.2 for light modes corresponding
to multiple mechanical modes.

Figure C.5. Parameters:
ω = 2π × 920 kHz,
Γ ' 0.1×ω.

Time domain plots of the mode functions in a two-sideband
evaluation. Left are the mode functions for the first pulse (entangling
pulse), right for the second pulse (readout pulse). The upper panels
show the mode functions α̃(+)(t) and β̃(−)(t) carrying most of the en-
tanglement. α̃(+)(t) targets the lower sideband in the first pulse, β̃(−)(t)
targets the upper sideband in the second pulse. The lower panels show
the mode functions α̃(−)(t) and β̃(+)(t) which target the opposite side-
bands (upper sideband in first pulse, lower sideband in second pulse).
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Figure C.6. Mode operator naming convention for homodyning with
sub-unit visibility ν and detector efficiency η.

c.5 correction of measured covariance matrices for sub-
unit visibility and detector efficiency

In the following, I expand on the discussion of the effects of sub-unit
efficiency and visibility in Section 5.3.3, respectively.

Let η be the detector efficiency and ν the homodyne visibility. In
our experiment, we have η ' 95 % and, typically, ν ' 90 % due to
imperfect spatial mode matching. We now consider the effect of these
imperfections on homodyne detection of the state ρ1 of signal mode
â1 using a local oscillator in a coherent state |α〉 with a large coherent
amplitude |α| � 0 (see Figure C.6 for naming conventions).

visibility Sub-unit homodyne interference visibility ν < 1 means
(in our case) that the signal mode and the local oscillator mode are
not perfectly spatially mode-matched, i.e. these modes do not over-
lap fully at the 50/50-beamsplitter. To account for this effect, we need
to decompose the local oscillator mode into two orthogonal spatial
modes, â2 and b̂2 such that â2 has perfect overlap with the signal
mode â1 on the 50/50-beamsplitter and b̂2 has zero overlap with it.
Such a decomposition is always possible since it simply amounts to a
projection of the spatial mode profile of the local oscillator mode onto
a mode with perfect overlap with the signal mode; the remainder is
then automatically orthogonal to the signal mode. For convenience,
we use b̂1 as the label for that mode in the signal path which overlaps
perfectly with the auxiliary local oscillator mode b̂2. Figure C.6 de-
picts schematically all spatial modes required to analyze the effects
of visibility and efficiency. The modes âi (depicted in red) are those
which have overlap with the signal, while the modes b̂i (depicted in
blue) are those which have no overlap with the signal mode, hence
which only contribute noise to the measurement.

Let ρ1 be the quantum state of the signal mode â1. Since the sig-
nal is (by definition) only in mode â1, the mode b̂1 is actually in the
vacuum state |0〉. It is easy to check that a homodyne visibility of ν

implies that the states of the two local oscillator modes, â2 and b̂2 are



C.5 correction for sub-unit visibility and detector efficiency 191

given by |α · ν〉 and |α ·
√

1− ν2〉, respectively (assuming the coherent
amplitude of the local oscillator to be given by α).

Combining these modes on the 50/50-beamsplitter yields four new
modes â3, â4, b̂3, b̂4 defined by:(

â3

â4

)
=

1√
2

(
1 1

1 −1

)(
â1

â2

)
, (C.7)(

b̂3

b̂4

)
=

1√
2

(
1 1

1 −1

)(
b̂1

b̂2

)
. (C.8)

efficiency The modes emerging from the 50/50-beamsplitter are
sent to two photodetectors which measure the sum of the intensities
in the â- and b̂-modes (there are no interference effects between these
modes since they are orthogonal by definition). Since the detectors
are not perfectly efficient, however, not every photon in these modes
is actually detected. We can model the inefficiency by including (for
each of the modes â3, â4, b̂3, b̂4) another beam splitter with transmissiv-
ity η before the detectors. These beam splitters model the scattering
of
√

1− η2 of the photons out of the detected mode. We can therefore
define the modes â5, â6, b̂5, b̂6 which are actually detected as follows:

â5 =
√

η · â3 +
√

1− η · â30, (C.9)

â6 =
√

η · â4 +
√

1− η · â40, (C.10)

b̂5 =
√

η · b̂3 +
√

1− η · b̂30, (C.11)

b̂6 =
√

η · b̂4 +
√

1− η · b̂40. (C.12)

â30, â40, b̂30, b̂40 are vacuum modes which are mixed with the signal
modes on the beam splitters which model the inefficient detection.

The photocurrent is proportional to the number difference operator

N̂− ≡
(

â†
5 â5 + b̂†

5 b̂5

)
−
(

â†
6 â6 + b̂†

6 b̂6

)
. (C.13)

A lengthy but simple calculation yields the following variance of N̂−:

〈N̂2
− − 〈N̂−〉

2〉 = ηΣ(0) + η2ν2Σ(sig), with (C.14)

Σ(sig) ≡
(

α2 〈â†
1 â†

1〉+ (α∗)2 〈â1 â1〉+ 2 |α|2 〈â†
1 â1〉

)
(C.15)

Σ(0) ≡ |α|2 + 〈â†
1 â1〉 ' |α|2 , (C.16)

where the expectation values 〈. . .〉 ≡ tr (ρ1 . . .) are with respect to
the quantum state ρ1 of the signal field. For vacuum input ρ1 =

|0〉 〈0|, we obtain simply ηΣ(0), hence Σ(0) is the variance we would
have measured in in an ideal (ν = 1, η = 1) shot noise measurement.
With a non-vacuum signal, on the other hand, we measure ηΣ(0) +
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η2ν2Σ(sig), therefore Σ(sig) + Σ(0) would have been measured for the
signal in an ideal measurement.

Since our calculation of pulsed quadratures is simply a linear trans-
formation of the measured photo-currents, the above equations are di-
rectly applicable to the sample covariance matrices of pulsed quadra-
tures. Explicitly, we have the following relations between measured
and ideal covariance matrices σ̃(0)

(meas), σ̃(0)
(ideal) for shot noise and

σ̃(sig)
(meas), σ̃(sig)

(ideal) for signal measurements, respectively:

σ̃(0)
(meas) = ησ̃(0)

(ideal), (C.17)

σ̃(sig)
(meas) = η2ν²σ̃(sig)

(ideal) + (η − η2ν2)σ̃(0)
(ideal) (C.18)

= η2ν²σ̃(sig)
(ideal) + (1− ην2)σ̃(0)

(meas). (C.19)

Therefore the corrections for inefficiency and visibility are given by:

σ̃(sig)
(ideal) =

σ̃(sig)
(meas) − (1− ην2)σ̃(0)

(meas)

η2ν² , (C.20)

σ̃(0)
(ideal) = σ̃(0)

(meas)/η. (C.21)

c.6 optimal pulse width Γopt

In Section 5.4.2, I presented systematic single-mode studies of the
dependence of the entanglement on two key parameters, the optome-
chanical coupling g and the mechanical quality factor Q. For the
plots presented in Section 5.4.2, I optimized the logarithmic negativ-
ity EN with respect to the pulse width Γ. Below, I provide contour
plots which show how the pulse width Γopt, for which the maximum
amount of logarithmic negativity is detected, depends on g and Q.

c.6.1 Without optical noise

Figure C.7a shows the optimal pulse width Γopt for a single mechan-
ical mode at ωm = 2π × 920 kHz without optical noise (Figure 5.5a
shows the corresponding values of logarithmic negativity). Almost
everywhere, Γopt decreases with increasing mechanical quality factor
Q. This makes sense because entanglement is only expected for pulseΓopt decreases with Q

widths larger than the mechanical decoherence rate n̄γ ∝ 1/Q. If Q
increases, mechanical decoherence decreases and the pulses can be-
come longer in time and, correspondingly, narrower in the frequency
domain.

On the other hand, the optimal pulse width increases with increas-
ing coupling g. This also makes senses, since there is an upper limitΓopt increases with g

of roughly g2/κ for the pulse widths for which entanglement can
still be detected. Hence, the upper limit on the Γ-values suitable for
entanglement detection increases with g.
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(a) Optimal pulse width Γopt (in kHz) versus quality factor Q and op-
tical input power Pin for single-mode simulations without optical noise.
The corresponding amount of entanglement is shown in Figure 5.5a.

1020

40

(b) Optimal pulse width Γopt (in kHz) versus quality factor Q and
optical input power Pin for single-mode simulations with optical noise as
measured for our setup. The corresponding amount of entanglement
is shown in Figure 5.5b.

Figure C.7. Parameters:
ωm = 2π × 920 kHz,
κ ' 2.73×ωm,
g0 = 65× 10−6 ×ωm,
T = 5 K.

Optimal pulse width Γopt (in kHz) versus quality factor Q
and optical input power Pin for single-mode simulations with optical
noise (Figure C.7b) and without it (Figure C.7a). Crosses mark the
parameters which were simulated. For these parameters, the pulse
width Γ has been optimized with respect to the logarithmic negativity.
In between these parameters, values for the optimal pulse width Γopt
were interpolated linearly.
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c.6.2 Including optical noise

Figure C.7b shows the same plot for an analogous simulation includ-
ing optical noise. The general trend of decreasing Γopt for increasingΓopt decreases with Q

and increases with g quality factor is the same as for the noise-free case. Also the increase
of Γopt with increasing coupling is similar to the noise-free case.

The main difference to the noise-free case is that, for all parameters
considered here, the optimal pulse widths are significantly smaller
(by around a factor of two). This is because for pulses which arebetter signal-to-noise for

narrower pulses broader (in frequency space) the signal to noise ratio is worse: they
collect more optical noise (which is broad-band) compared to mechan-
ical signal (which is comparatively narrow-band). In the presence of
noise, pulses which are more well-defined in frequency space (longer
in the time domain) are therefore advantageous.

c.7 autocorrelation of pulse quadratures

In Section 5.9.2, I discussed the role of the autocorrelation time of
the pulse quadratures in determining the minimum required mea-
surement time for our experiment. In this section, I provide some
additional information regarding the dependence of the autocorrela-
tion time of the pulse quadratures on the mechanical coherence time
and on the detuning of the laser drive.

Figure C.8 shows the autocorrelation time53 of pulse quadratures53 defined as 1/e-time of
the autocorrelation fct. as a function of mechanical quality factor in resonant single-mode

simulations (for different optical input powers). The plot shows thatresonant case:
autocorrelation time

roughly equal to inverse
mechanical line width

the autocorrelation time is roughly proportional to the mechanical
quality factor. If measured in mechanical periods, the autocorrelation
time is on the order of the mechanical quality factor. In other words,
the autocorrelation time of the pulse quadratures is on the order of
the inverse mechanical line width.

Since the mechanical line width can be increased drastically via
optical damping, we expect to see a drastic reduction in the autocor-
relation time of the pulse quadratures for a red-detuned drive. This isreduced autocorrelation

due to optical damping demonstrated in Figure C.9, where autocorrelation functions of pulse
quadratures are shown side-by-side for the resonant and the detuned
case. In stark contrast to the resonant case, the pulse quadratures are
all essentially delta-correlated for a red-detuned drive.

In fact, for the considered parameters (Q ∈
[
5× 105, . . . , 5× 107]

and Pin ∈ [2.5 µW, . . . , 50 µW]), detuned simulations yield delta-cor-
related pulse quadratures. Hence, the corresponding autocorrelation
time is smaller than the duration of one pulse pair, in this case 1× 104

mechanical periods. Contrasting this with autocorrelation times as
large as 3× 107 mechanical periods in the resonant case, we conclude
that the red-detuning (by 2π × 200 kHz) yields a suppression of the
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Figure C.8. Parameters:
with optical noise,
ωm = 2π × 0.92 MHz,
κ ' 2.73×ωm,
g0 ' 71× 10−6 ×ωm,
Pin = [2.5, . . . , 50]µW,
g ∝
√

Pin '
[0.1, . . . , 0.48]×ωm,
Q = 5·

[
105, . . . , 107],

∆ = 0 kHz, T = 5 K;
for the evaluation:
Γ ' 82 kHz.

Mean autocorrelation time of pulse quadratures for single-
mode simulations with a resonant drive as a function of mechanical
quality factor. The different curves correspond to different values of
the optical input power (with darker colors corresponding to higher
input powers). The autocorrelation times have been extracted from
single-mode simulations by estimating the 1/e-time for the autocorre-
lation function. Figure C.9 shows exemplary autocorrelation functions
of pulse quadratures for Q = 5× 106 and Pin = 15 µW (these parame-
ters are marked with a black dot in the current plot). As expected, the
autocorrelation time of the pulse quadratures (measured in mechanical
periods) is roughly given by the mechanical quality factor.

Figure C.9. Parameters:
with optical noise,
ωm = 2π × 0.92 MHz,
κ ' 2.73×ωm,
g ' 0.26×ωm,
∆ = 2π × [0, 200] kHz,
Q = 5× 106, T = 5 K.

Normalized autocorrelation function of pulse quadra-
tures for resonant (greenish lines) and red-detuned (red-purplish lines)
single-mode simulations. The mechanical quality factor was Q =
5× 106 in both cases. The resonant simulation corresponds to the one
marked with a black dot in Figure C.8.
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autocorrelation time by at least 3 orders of magnitude. This is con-
sistent with the assumption that autocorrelation times are essentially
given by the inverse mechanical line width since the latter is roughly
4 orders of magnitude smaller for the red-detuned case considered
here compared to the resonant case.

This drastic decrease in autocorrelation time due to the detuned
drive yields a significant decrease in the minimally required measure-
ment time, as discussed in Section 5.9.2.

c.8 detuned multi-mode simulations

Figure C.10 shows the effect of moderate red-detuning on entangle-
ment in a multi-mode situation with 45 modes. For narrow pulse
widths (on the order of 10 kHz), the detuning seems to shift the entan-
glement curve upwards. This is consistent with the results from two-
mode simulations presented in Section 5.9.3. For increasing pulse
width, however, the covariance matrices for the detuned simulation
fail to be physical and it becomes unclear up to which pulse width the
entanglement curve for the detuned case can be trusted. We currently
do not understand the reason for this “loss of physicality” in the de-
tuned multi-mode case. In particular, it is unclear whether this is a
contingent feature of this specific simulation or a general effect. The
fact that, in two-mode simulations, covariance matrices were always
physical in the detuned case gives hope that there is no in-principle
problem with detuning in a multi-mode setting.

c.9 comparison of different noise models

In the simulations presented in this thesis, I explored the possibility
of entanglement detection both with and without optical noise. The
noise model used in these simulations is based on the noise measure-
ments for our setup described in Section 3.1.3 and Section 3.1.4. Here,
I want to briefly touch upon the following two questions with respect
to the role of the optical noise:

1. How sensitive are our results with respect to the noise model?

2. How much could we improve our results by improving the op-
tical noise?

I cannot answer these questions systematically but want to at least
discuss them for one specific example. Figure C.11 shows results
from two-mode simulations for different models of the laser noise
and for the noise-free case.

The different noise models are based on the measurements de-
scribed in Section 3.1.3 and Section 3.1.4. Taking these measurements
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Figure C.10. Parameters:
with optical noise,
∆ = 2π × [0, 200] kHz,
ω1 = 2π × 800 kHz,
ω2,...,45/(2π ·MHz) '
{1.26, . . . , 4.56},
Q = 5× 106 (all modes),
g1 ' 0.37×ω1,
g2,...,45/ω1 ∈[
7.4× 10−3, . . . , 0.22

]
κ ' 2.73×ω1,
Pin = 20 µW, T = 5 K.

Logarithmic negativity EN versus pulse width Γ for a sim-
ulation of the first 45 modes of a SiN membrane of roughly 490 µm side
length. Plotted are the results of a two-sideband evaluation of a sim-
ulation with a resonant drive (blue solid line; same as in Figure 5.14)
and a simulation with a 200 kHz red-detuned drive (red solid line). For
the resonant simulation, almost all pulse widths considered in the eval-
uation yield physical covariance matrices (marked by circle markers in
the plot). For the detuned simulation, on the other hand, only two out
of twenty pulse widths lead to physical covariance matrices. Note that
both curves result from a two-sideband evaluation.

Figure C.11. Parameters:
with optical noise,
ω1 = 2π × 920 kHz,
ω2 = 1.4×ω1,
Q1 = Q2 = 5× 106,
g01 = g02 = 2π × 65 Hz,
g1 = g2 ' 0.31×ω1,
κ ' 2.73×ω1,
Pin = 20 µW, T = 5 K.

Logarithmic negativity EN versus pulse width Γ for a
two-mode simulation using different models for the optical noise. The
assumptions behind the different noise models are explained in the
main text. Note that, in this plot, only the pulse width Γ1 of mode
1 is varied; the pulse width for mode 2 is kept fixed at its optimum
value Γ2 ' 58 kHz. The evaluations presented here are single-sideband
evaluations.
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at face value yields the curve labeled “optical noise as measured”
(green, diamond marker). This is the worst case scenario. As dis-measured versus

expected laser noise cussed in Section 3.1.4, we have good reasons to believe, that in the
noise measurements (with the high-finesse filter cavity operated in
the double pass configuration) the actual laser noise drops below the
noise floor of the noise measurement itself. By assuming that the
filter cavity actually yields the expected performance in double pass
and applying that filter performance to the single-pass noise measure-
ments we arrive at a significantly more optimistic noise model which
yields the curves labeled “optical noise as expected” (blue, diamond
markers).

These two significantly different noise models (and their correspond-
ing entanglement curves) provide a preliminary answer to question
1: How sensitive are our results to how exactly we model the optical
noise? We see in Figure C.11 that the curves resulting from “noise assensitivity to the

noise model expected” and “noise as measured” differ significantly. As expected,
the more conservative noise model (“as measured”), which is the one
used throughout this thesis, performs worse than the model with
“noise as expected”. More importantly, however, the maximum of the
entanglement is relatively similar in both cases. This suggests that
our choice of noise model is benign in the sense of being conserva-
tive but not overly pessimistic.

Figure C.11 also shows another curve labeled “amplitude noise as
expected, no phase noise” (purple, cross markers). The noise modelamplitude versus

phase noise behind this curve is the same as “optical noise as expected” but with
phase noise completely switched off. Quite surprisingly, the result-
ing entanglement curve is not significantly better than the curve for
“optical noise as expected”. But both curves are significantly worse
than the curve resulting from a noise-free simulation (red, circle mark-
ers). This suggests the following preliminary answer to question 2: If
our expectation regarding the phase noise (as encoded in the “opti-
cal noise as expected”-model) are correct, then we are not limited by
phase noise, but only by amplitude noise. Furthermore, by eliminat-
ing the amplitude noise, we could significantly improve the entangle-
ment.
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